9,176 research outputs found

    Static Analysis for Extracting Permission Checks of a Large Scale Framework: The Challenges And Solutions for Analyzing Android

    Get PDF
    A common security architecture is based on the protection of certain resources by permission checks (used e.g., in Android and Blackberry). It has some limitations, for instance, when applications are granted more permissions than they actually need, which facilitates all kinds of malicious usage (e.g., through code injection). The analysis of permission-based framework requires a precise mapping between API methods of the framework and the permissions they require. In this paper, we show that naive static analysis fails miserably when applied with off-the-shelf components on the Android framework. We then present an advanced class-hierarchy and field-sensitive set of analyses to extract this mapping. Those static analyses are capable of analyzing the Android framework. They use novel domain specific optimizations dedicated to Android.Comment: IEEE Transactions on Software Engineering (2014). arXiv admin note: substantial text overlap with arXiv:1206.582

    Security Code Smells in Android ICC

    Get PDF
    Android Inter-Component Communication (ICC) is complex, largely unconstrained, and hard for developers to understand. As a consequence, ICC is a common source of security vulnerability in Android apps. To promote secure programming practices, we have reviewed related research, and identified avoidable ICC vulnerabilities in Android-run devices and the security code smells that indicate their presence. We explain the vulnerabilities and their corresponding smells, and we discuss how they can be eliminated or mitigated during development. We present a lightweight static analysis tool on top of Android Lint that analyzes the code under development and provides just-in-time feedback within the IDE about the presence of such smells in the code. Moreover, with the help of this tool we study the prevalence of security code smells in more than 700 open-source apps, and manually inspect around 15% of the apps to assess the extent to which identifying such smells uncovers ICC security vulnerabilities.Comment: Accepted on 28 Nov 2018, Empirical Software Engineering Journal (EMSE), 201

    Automatically Securing Permission-Based Software by Reducing the Attack Surface: An Application to Android

    Get PDF
    A common security architecture, called the permission-based security model (used e.g. in Android and Blackberry), entails intrinsic risks. For instance, applications can be granted more permissions than they actually need, what we call a "permission gap". Malware can leverage the unused permissions for achieving their malicious goals, for instance using code injection. In this paper, we present an approach to detecting permission gaps using static analysis. Our prototype implementation in the context of Android shows that the static analysis must take into account a significant amount of platform-specific knowledge. Using our tool on two datasets of Android applications, we found out that a non negligible part of applications suffers from permission gaps, i.e. does not use all the permissions they declare

    Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development

    Full text link
    Mobile devices and platforms have become an established target for modern software developers due to performant hardware and a large and growing user base numbering in the billions. Despite their popularity, the software development process for mobile apps comes with a set of unique, domain-specific challenges rooted in program comprehension. Many of these challenges stem from developer difficulties in reasoning about different representations of a program, a phenomenon we define as a "language dichotomy". In this paper, we reflect upon the various language dichotomies that contribute to open problems in program comprehension and development for mobile apps. Furthermore, to help guide the research community towards effective solutions for these problems, we provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference on Program Comprehension (ICPC'18

    An Empirical Study on Android for Saving Non-shared Data on Public Storage

    Get PDF
    With millions of apps that can be downloaded from official or third-party market, Android has become one of the most popular mobile platforms today. These apps help people in all kinds of ways and thus have access to lots of user's data that in general fall into three categories: sensitive data, data to be shared with other apps, and non-sensitive data not to be shared with others. For the first and second type of data, Android has provided very good storage models: an app's private sensitive data are saved to its private folder that can only be access by the app itself, and the data to be shared are saved to public storage (either the external SD card or the emulated SD card area on internal FLASH memory). But for the last type, i.e., an app's non-sensitive and non-shared data, there is a big problem in Android's current storage model which essentially encourages an app to save its non-sensitive data to shared public storage that can be accessed by other apps. At first glance, it seems no problem to do so, as those data are non-sensitive after all, but it implicitly assumes that app developers could correctly identify all sensitive data and prevent all possible information leakage from private-but-non-sensitive data. In this paper, we will demonstrate that this is an invalid assumption with a thorough survey on information leaks of those apps that had followed Android's recommended storage model for non-sensitive data. Our studies showed that highly sensitive information from billions of users can be easily hacked by exploiting the mentioned problematic storage model. Although our empirical studies are based on a limited set of apps, the identified problems are never isolated or accidental bugs of those apps being investigated. On the contrary, the problem is rooted from the vulnerable storage model recommended by Android. To mitigate the threat, we also propose a defense framework

    Third Party Tracking in the Mobile Ecosystem

    Full text link
    Third party tracking allows companies to identify users and track their behaviour across multiple digital services. This paper presents an empirical study of the prevalence of third-party trackers on 959,000 apps from the US and UK Google Play stores. We find that most apps contain third party tracking, and the distribution of trackers is long-tailed with several highly dominant trackers accounting for a large portion of the coverage. The extent of tracking also differs between categories of apps; in particular, news apps and apps targeted at children appear to be amongst the worst in terms of the number of third party trackers associated with them. Third party tracking is also revealed to be a highly trans-national phenomenon, with many trackers operating in jurisdictions outside the EU. Based on these findings, we draw out some significant legal compliance challenges facing the tracking industry.Comment: Corrected missing company info (Linkedin owned by Microsoft). Figures for Microsoft and Linkedin re-calculated and added to Table

    Ghera: A Repository of Android App Vulnerability Benchmarks

    Full text link
    Security of mobile apps affects the security of their users. This has fueled the development of techniques to automatically detect vulnerabilities in mobile apps and help developers secure their apps; specifically, in the context of Android platform due to openness and ubiquitousness of the platform. Despite a slew of research efforts in this space, there is no comprehensive repository of up-to-date and lean benchmarks that contain most of the known Android app vulnerabilities and, consequently, can be used to rigorously evaluate both existing and new vulnerability detection techniques and help developers learn about Android app vulnerabilities. In this paper, we describe Ghera, an open source repository of benchmarks that capture 25 known vulnerabilities in Android apps (as pairs of exploited/benign and exploiting/malicious apps). We also present desirable characteristics of vulnerability benchmarks and repositories that we uncovered while creating Ghera.Comment: 10 pages. Accepted at PROMISE'1

    PinMe: Tracking a Smartphone User around the World

    Full text link
    With the pervasive use of smartphones that sense, collect, and process valuable information about the environment, ensuring location privacy has become one of the most important concerns in the modern age. A few recent research studies discuss the feasibility of processing data gathered by a smartphone to locate the phone's owner, even when the user does not intend to share his location information, e.g., when the Global Positioning System (GPS) is off. Previous research efforts rely on at least one of the two following fundamental requirements, which significantly limit the ability of the adversary: (i) the attacker must accurately know either the user's initial location or the set of routes through which the user travels and/or (ii) the attacker must measure a set of features, e.g., the device's acceleration, for potential routes in advance and construct a training dataset. In this paper, we demonstrate that neither of the above-mentioned requirements is essential for compromising the user's location privacy. We describe PinMe, a novel user-location mechanism that exploits non-sensory/sensory data stored on the smartphone, e.g., the environment's air pressure, along with publicly-available auxiliary information, e.g., elevation maps, to estimate the user's location when all location services, e.g., GPS, are turned off.Comment: This is the preprint version: the paper has been published in IEEE Trans. Multi-Scale Computing Systems, DOI: 0.1109/TMSCS.2017.275146
    • …
    corecore