108 research outputs found

    An Efficient and Provably Secure ID-Based Threshold Signcryption Scheme

    Get PDF
    Signcryption is a cryptographic primitive that performs digital signature and public key encryption simultaneously, at a lower computational costs and communication overheads than the signature-then-encryption approach. Recently, two identity-based threshold signcryption schemes[12],[26] have been proposed by combining the concepts of identity-based threshold signature and signcryption together. However, the formal models and security proofs for both schemes are not considered. In this paper, we formalize the concept of identity-based threshold signcryption and give a new scheme based on the bilinear pairings. We prove its confidentiality under the Decisional Bilinear Diffie-Hellman assumption and its unforgeability under the Computational Diffie-Hellman assumption in the random oracle model. Our scheme turns out to be more efficient than the two previously proposed schemes

    Signcryption schemes with threshold unsigncryption, and applications

    Get PDF
    The final publication is available at link.springer.comThe goal of a signcryption scheme is to achieve the same functionalities as encryption and signature together, but in a more efficient way than encrypting and signing separately. To increase security and reliability in some applications, the unsigncryption phase can be distributed among a group of users, through a (t, n)-threshold process. In this work we consider this task of threshold unsigncryption, which has received very few attention from the cryptographic literature up to now (maybe surprisingly, due to its potential applications). First we describe in detail the security requirements that a scheme for such a task should satisfy: existential unforgeability and indistinguishability, under insider chosen message/ciphertext attacks, in a multi-user setting. Then we show that generic constructions of signcryption schemes (by combining encryption and signature schemes) do not offer this level of security in the scenario of threshold unsigncryption. For this reason, we propose two new protocols for threshold unsigncryption, which we prove to be secure, one in the random oracle model and one in the standard model. The two proposed schemes enjoy an additional property that can be very useful. Namely, the unsigncryption protocol can be divided in two phases: a first one where the authenticity of the ciphertext is verified, maybe by a single party; and a second one where the ciphertext is decrypted by a subset of t receivers, without using the identity of the sender. As a consequence, the schemes can be used in applications requiring some level of anonymity, such as electronic auctions.Peer ReviewedPostprint (author's final draft

    SIGNCRYPTION ANALYZE

    Get PDF
    The aim of this paper is to provide an overview for the research that has been done so far in signcryption area. The paper also presents the extensions for the signcryption scheme and discusses the security in signcryption. The main contribution to this paper represents the implementation of the signcryption algorithm with the examples provided.ElGamal, elliptic curves, encryption, identity-based, proxy-signcryption, public key, ring-signcryption, RSA, signcryption

    Analysis and Improvement of Authenticatable Ring Signcryption Scheme

    Get PDF
    Ring signcryption is an anonymous signcryption which allows a user to anonymously signcrypt a message on behalf of a set of users including himself. In an ordinary ring signcryption scheme, even if a user of the ring generates a signcryption, he also cannot prove that the signcryption was produced by himself. In 2008, Zhang, Yang, Zhu, and Zhang solve the problem by introducing an identity-based authenticatable ring signcryption scheme (denoted as the ZYZZ scheme). In the ZYZZ scheme, the actual signcrypter can prove that the ciphertext is generated by himself, and the others cannot authenticate it. However, in this paper, we show that the ZYZZ scheme is not secure against chosen plaintext attacks. Furthermore, we propose an improved scheme that remedies the weakness of the ZYZZ scheme. The improved scheme has shorter ciphertext size than the ZYZZ scheme. We then prove that the improved scheme satisfies confidentiality, unforgeability, anonymity and authenticatability

    nMIBAS: A Novel Multi-Receiver ID-Based Anonymous Signcryption with Decryption Fairness

    Get PDF
    Based on the ring signature technology, the multi-receiver ID-based anonymous signcryption (MIBAS) is proposed, and its goal is to protect the privacy of the sender or so-called signer. In an MIBAS scheme, every receiver can verify whether the sender is a member of a trusted group and thus ensure the reliability of the message source, but he could not get the real sender. However, MIBAS paid no attention to privacy of the receivers and has not taken the privacy of the receivers into account during its design. Our analyses show that there widely exist the receiver privacy exposure and decryption unfairness problems in the existing multi-receiver ID-based signcryption schemes. Motivated by these concerns, a new multi-receiver ID-based anonymous signcryption (nMIBAS) is proposed to protect the identity of the receivers. The nMIBAS scheme can not only solve the problem that the existing schemes cannot protect the privacy of receivers, but also meet the fairness of decryption to prevent the possible cheating behavior of the sender effectively. Analysis shows that this scheme is a secure and effective signcryption scheme

    Multi-message multi-receiver signcryption scheme based on blockchain

    Get PDF
    In conventional message communication systems, the practice of multi-message multi-receiver signcryption communication encounters several challenges, including the vulnerability to Key Generation Center (KGC) attacks, privacy breaches and excessive communication data volume. The KGC necessitates a secure channel to transmit partial private keys, thereby rendering the security of these partial private keys reliant on the integrity of the interaction channel. This dependence introduces concerns regarding the confidentiality of the private keys. Our proposal advocates for the substitution of the KGC in traditional certificateless schemes with blockchain and smart contract technology. Parameters are publicly disclosed on the blockchain, leveraging its tamper-proof property to ensure security. Furthermore, this scheme introduces conventional encryption techniques to achieve user identity privacy in the absence of a secure channel, effectively resolving the issue of user identity disclosure inherent in blockchain-based schemes and enhancing communication privacy. Moreover, users utilize smart contract algorithms to generate a portion of the encrypted private key, thereby minimizing the possibility of third-party attacks. In this paper, the scheme exhibits resilience against various attacks, including KGC leakage attacks, internal privilege attacks, replay attacks, distributed denial of service attacks and Man-in-the-Middle (MITM) attacks. Additionally, it possesses desirable security attributes such as key escrow security and non-repudiation. The proposed scheme has been theoretically and experimentally analyzed under the random oracle model, based on the computational Diffie-Hellman problem and the discrete logarithm problem. It has been proven to possess confidentiality and unforgeability. Compared with similar schemes, our scheme has lower computational cost and shorter ciphertext length. It has obvious advantages in communication and time overhead

    Contributions to secret sharing and other distributed cryptosystems

    Get PDF
    The present thesis deals with primitives related to the eld of distributed cryptography. First, we study signcryption schemes, which provide at the same time the functionalities of encryption and signature, where the unsigncryption operation is distributed. We consider this primitive from a theoretical point of view and set a security framework for it. Then, we present two signcryption schemes with threshold unsigncryption, with di erent properties. Furthermore, we use their authenticity property to apply them in the development of a di erent primitive: digital signatures with distributed veri cation. The second block of the thesis deals with the primitive of multi-secret sharing schemes. After stating some e ciency limitations of multi-secret sharing schemes in an information-theoretic scenario, we present several multi-secret sharing schemes with provable computational security. Finally, we use the results in multi-secret sharing schemes to generalize the traditional framework of distributed cryptography (with a single policy of authorized subsets) into a multipolicy setting, and we present both a multi-policy distributed decryption scheme and a multi-policy distributed signature scheme. Additionally, we give a short outlook on how to apply the presented multi-secret sharing schemes in the design of other multi-policy cryptosystems, like the signcryption schemes considered in this thesis. For all the schemes proposed throughout the thesis, we follow the same formal structure. After de ning the protocols of the primitive and the corresponding security model, we propose the new scheme and formally prove its security, by showing a reduction to some computationally hard mathematical problem.Avui en dia les persones estan implicades cada dia més en diferents activitats digitals tant en la seva vida professional com en el seu temps lliure. Molts articles de paper, com diners i tiquets, estan sent reemplaçats més i més per objectes digitals. La criptografia juga un paper crucial en aquesta transformació, perquè proporciona seguretat en la comunicació entre els diferents participants que utilitzen un canal digital. Depenent de la situació específica, alguns requisits de seguretat en la comunicació poden incloure privacitat (o confidencialitat), autenticitat, integritat o no-repudi. En algunes situacions, repartir l'operació secreta entre un grup de participants fa el procés més segur i fiable que quan la informació secreta està centralitzada en un únic participant; la criptografia distribuïda és l’àrea de la criptografia que estudia aquestes situacions. Aquesta tesi tracta de primitives relacionades amb el camp de la criptografia distribuïda. Primer, estudiem esquemes “signcryption”, que ofereixen a la vegada les funcionalitats de xifrat i signatura, on l'operació de “unsigncryption” està distribuïda. Considerem aquesta primitiva des d’un punt de vista teòric i establim un marc de seguretat per ella. Llavors, presentem dos esquemes “signcryption” amb operació de “unsigncryption” determinada per una estructura llindar, cada un amb diferents propietats. A més, utilitzem la seva propietat d’autenticitat per desenvolupar una nova primitiva: signatures digitals amb verificació distribuïda. El segon bloc de la tesi tracta la primitiva dels esquemes de compartició de multi-secrets. Després de demostrar algunes limitacions en l’eficiència dels esquemes de compartició de multi-secrets en un escenari de teoria de la informació, presentem diversos esquemes de compartició de multi-secrets amb seguretat computacional demostrable. Finalment, utilitzem els resultats obtinguts en els esquemes de compartició de multi-secrets per generalitzar el paradigma tradicional de la criptografia distribuïda (amb una única política de subconjunts autoritzats) a un marc multi-política, i presentem un esquema de desxifrat distribuït amb multi-política i un esquema de signatura distribuïda amb multi-política. A més, donem indicacions de com es poden aplicar els nostres esquemes de compartició de multi-secrets en el disseny d’altres criptosistemes amb multi-política, com per exemple els esquemes “signcryption” considerats en aquesta tesi. Per tots els esquemes proposats al llarg d’aquesta tesi, seguim la mateixa estructura formal. Després de definir els protocols de la primitiva primitius i el model de seguretat corresponent, proposem el nou esquema i demostrem formalment la seva seguretat, mitjançant una reducció a algun problema matemàtic computacionalment difícil
    corecore