170 research outputs found

    RECONFIGURABLE LOW POWER AND AREA EFFICIENT ESPFFIR FILTER USING VHBCSE MULTIPLIER

    Get PDF
    Reconfigurable Even Symmetric Parallel Fast Finite Impulse Response (RESPFFIR) filter shall be utilized as the Processing Element (PE) in Software Defined Radio (SDR) design to improve the throughput. The number of multipliers required in RESPFFIR filter increases when parallelism length increases. The Constant Multiplier (CM) technique is used to diminish the power consumption in FIR filters by reducing the number of Logical Operators (LO) and Logical Depth (LD). Binary Common Subexpression Elimination (BCSE) method is suitable to exploit symmetric coefficient in FIR filters. The Vertical Horizontal Binary Common Subexpression Elimination (VHBCSE) technique based Constant Multiplier (CM) design further diminish the number of LO and LD. The 2-bit BCSE algorithm has been applied vertically across neighboring coefficients and HCSE makes use of CSs that arise within each coefficient to eradicate redundant computations, which intern reduce logical operator in constant multiplier. This paper presents the design of Reconfigurable Even Symmetric Parallel Fast Finite Impulse Response (RESPFFIR) filter using VHBCSE based CM multiplier, which is reconfigurable with reduced power and area consumption without degrading the throughput. The power consumption reduces by 12% and the area required gets reduced by 24% in the proposed design when compared with existing CSE Hcub-n Multiple Constant Multiplier based  ESPFFIR filter design. The analysis is done using Cadence RC synthesize tools

    Timing-Error Tolerance Techniques for Low-Power DSP: Filters and Transforms

    Get PDF
    Low-power Digital Signal Processing (DSP) circuits are critical to commercial System-on-Chip design for battery powered devices. Dynamic Voltage Scaling (DVS) of digital circuits can reclaim worst-case supply voltage margins for delay variation, reducing power consumption. However, removing static margins without compromising robustness is tremendously challenging, especially in an era of escalating reliability concerns due to continued process scaling. The Razor DVS scheme addresses these concerns, by ensuring robustness using explicit timing-error detection and correction circuits. Nonetheless, the design of low-complexity and low-power error correction is often challenging. In this thesis, the Razor framework is applied to fixed-precision DSP filters and transforms. The inherent error tolerance of many DSP algorithms is exploited to achieve very low-overhead error correction. Novel error correction schemes for DSP datapaths are proposed, with very low-overhead circuit realisations. Two new approximate error correction approaches are proposed. The first is based on an adapted sum-of-products form that prevents errors in intermediate results reaching the output, while the second approach forces errors to occur only in less significant bits of each result by shaping the critical path distribution. A third approach is described that achieves exact error correction using time borrowing techniques on critical paths. Unlike previously published approaches, all three proposed are suitable for high clock frequency implementations, as demonstrated with fully placed and routed FIR, FFT and DCT implementations in 90nm and 32nm CMOS. Design issues and theoretical modelling are presented for each approach, along with SPICE simulation results demonstrating power savings of 21 – 29%. Finally, the design of a baseband transmitter in 32nm CMOS for the Spectrally Efficient FDM (SEFDM) system is presented. SEFDM systems offer bandwidth savings compared to Orthogonal FDM (OFDM), at the cost of increased complexity and power consumption, which is quantified with the first VLSI architecture

    Arquiteturas paralelas avançadas para transmissores 5G totalmente digitais

    Get PDF
    The fifth generation of mobile communications (5G) is being prepared and should be rolled out in the early coming years. Massive number of Radio-Frequency (RF) front-ends, peak data rates of 10 Gbps (everywhere and everytime), latencies lower than 10 msec and huge device densities are some of the expected disruptive capabilities. At the same time, previous generations can not be jeopardized, fostering the design of novel flexible and highly integrated radio transceivers able to support the simultaneous transmission of multi-band and multi-standard signals. The concept of all-digital transmission is being pointed out as a promising architecture to cope with such challenging requirements, due to its fully digital radio datapath. This thesis is focused on the proposal and validation of fully integrated and advanced digital transmitter architectures that excel the state-of-the-art in different figures of merit, such as transmission bandwidth, spectral purity, carrier agility, flexibility, and multi-band capability. The first part of this thesis introduces the concept of all-digital RF transmission. In particular, the foundations inherent to this thematic line are given, together with the recent advances reported in the state-of-the-art architectures.The core of this thesis, containing the main developments achieved during the Ph.D. work, is then presented and discussed. The first key contribution to the state-of-the-art is the use of cascaded Delta-Sigma (∆Σ) architectures to relax the analog filtering requirements of the conventional All-Digital Transmitters while maintaining the constant envelope waveform. Then, it is presented the first reported architecture where Antenna Arrays are directly driven by single-chip and single-bit All-Digital Transmitters, with promising results in terms of simplification of the RF front-ends and overall flexibility. Subsequently, the thesis proposes the first reported RF-stage All-Digital Transmitter that can be embedded within a single Field-Programmable Gate Array (FPGA) device. Thereupon, novel techniques to enable the design of wideband All-Digital Transmitters are reported. Finally, the design of concurrent multi-band transmitters is introduced. In particular, the design of agile and flexible dual and triple bands All-DigitalTransmitter (ADT) is demonstrated, which is a very important topic for scenarios that demand carrier aggregation. This Ph.D. contributes withseveral advances to the state-of-the-art of RF all-digital transmitters.A quinta geração de comunicações móveis (5G) está a ser preparada e deve ser comercializada nos próximos anos. Algumas das caracterı́sticas inovadoras esperadas passam pelo uso de um número massivo de font-ends de Rádio-Frequência (RF), taxas de pico de transmissão de dados de 10 Gbps (em todos os lugares e em todas as ocasiões), latências inferiores a 10 mseg e elevadas densidades de dispositivos. Ao mesmo tempo, as gerações anteriores não podem ser ignoradas, fomentando o design de novos transceptores de rádio flexı́veis e altamente integrados, capazes de suportar a transmissão simultânea de sinais multi-banda e multi-standard. O conceito de transmissão totalmente digital é considerado como um tipo de arquitetura promissora para lidar com esses requisitos desafiantes, devido ao seu datapath de rádio totalmente digital. Esta tese é focada na proposta e validação de arquiteturas de transmissores digitais totalmente integradas e avançadas que ultrapassam o estado da arte em diferentes figuras de mérito, como largura de banda de transmissão, pureza espectral, agilidade de portadora, flexibilidade e capacidade multibanda. A primeira parte desta tese introduz o conceito de transmissores de RF totalmente digitais. Em particular, os fundamentos inerentes a esta linha temática são apresentados, juntamente com os avanços mais recentes do estado-da-arte. O núcleo desta tese, contendo os principais desenvolvimentos alcançados durante o trabalho de doutoramento, é então apresentado e discutido. A primeira contribuição fundamental para o estado da arte é o uso de arquiteturas em cascata com moduladores ∆Σ para relaxar os requisitos de filtragem analógica dos transmissores RF totalmente digitais convencionais, mantendo a forma de onda envolvente constante. Em seguida, é apresentada a primeira arquitetura em que agregados de antenas são excitados diretamente por transmissores digitais de um único bit inseridos num único chip, com resultados promissores em termos de simplificação dos front-ends de RF e flexibilidade em geral. Posteriormente, é proposto o primeiro transmissor totalmente digital RF-stage relatado que pode ser incorporado dentro de um único Agregado de Células Lógicas Programáveis. Novas técnicas para permitir o desenho de transmissores RF totalmente digitais de banda larga são também apresentadas. Finalmente, o desenho de transmissores simultâneos de múltiplas bandas é exposto. Em particular, é demonstrado o desenho de transmissores de duas e três bandas ágeis e flexı́veis, que é um tópico essencial para cenários que exigem agregação de múltiplas bandas.Apoio financeiro da Fundação para a Ciência e Tecnologia (FCT) no âmbito de uma bolsa de doutoramento, ref. PD/BD/105857/2014.Programa Doutoral em Telecomunicaçõe

    Design and Implementation of an RF Front-End for Software Defined Radios

    Get PDF
    Software Defined Radios have brought a major reformation in the design standards for radios, in which a large portion of the functionality is implemented through pro­ grammable signal processing devices, giving the radio the ability to change its op­ erating parameters to accommodate new features and capabilities. A software radio approach reduces the content of radio frequency and other analog components of the traditional radios and emphasizes digital signal processing to enhance overall receiver flexibility. Field Programmable Gate Arrays (FPGA) are a suitable technology for the hardware platform as they offer the potential of hardware-like performance coupled with software-like programmability. Software defined radio is a very broad field, encompassing the design of various technologies all the way from the antenna to RF, IF, and baseband digital design. The RF section primarily consists of analog hardware modules. The IF and baseband sections are primarily digital. It is the general process of the radio to convert the incoming signal from RF to IF and then IF to baseband for better signal processing system. In this thesis, some of major building blocks of a Software defined radio are de­ signed and implemented using FPGAs. The design of a Digital front end, which provides the bridge between the baseband and analog RF portions of a wireless receiver, is synthesized. The Digital front end receiver consists of a digital down converter(DDC) which in turn comprises of a direct digital frequency synthesizer (DDFS), a phase accumulator and a low pass filter. The signal processing block of the DDFS is executed using Co-ordinate Rotation Digital Computer (CORDIC) iii Abstract algorithm. Cascaded-Integrator-Comb filters (CIC) are implemented for changing the sample rate of the incoming data. Application of a DDC includes software ra­ dios, multicarrier, multimode digital receivers, micro and pico cell systems,broadband data applications, instrumentation and test equipment and in-building wireless tele­ phony. Also, in this thesis, interfaces for connecting Texas Instruments high speed and high resolution Analog-to-Digital converters (ADC) and Digital-to-Analog converters (DAC) with Xilinx Virtex-5 FPGAs are also implemented and demonstrated

    Low-Power High-Data-Rate Transmitter Design for Biomedical Application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Palmo : a novel pulsed based signal processing technique for programmable mixed-signal VLSI

    Get PDF
    In this thesis a new signal processing technique is presented. This technique exploits the use of pulses as the signalling mechanism. This Palmo 1 signalling method applied to signal processing is novel, combining the advantages of both digital and analogue techniques. Pulsed signals are robust, inherently low-power, easily regenerated, and easily distributed across and between chips. The Palmo cells used to perform analogue operations on the pulsed signals are compact, fast, simple and programmable

    Novas arquiteturas para transmissores digitais flexíveis e de banda larga

    Get PDF
    Next generation of wireless communication (5G) devices must achieve higher data rates, lower power consumption and better coverage by making a more efficient use of the RF spectrum and adopting highly exible radio architectures. To meet these requirements, the development of new radio devices will be far more complex and challenging than their predecessors. The future of radio communications have a twofold evolution, being one the low power consumption and the other the adaptability and intelligent use of the available resources. Conventional approaches for the radio physical layer are not capable to cope with the new demand for multi-band, multi-standard radio signals and present an inefficient and expensive solution for simultaneous transmission of multiple and heterogeneous radio signals. Digital radio transmitters have been presented as a solution for a newer and more exible architecture for future radios. All-digital transmitters use a completely digital implementation of the entire radio datapath from the baseband processing to the digital RF up-conversion. This concept bene ts from the use of highly integrated hardware together with a strong radio digitalization, motivated by the exibility and high performance from cognitive and software defi ned radio. However, such devices are still far from a massive deployment in most of communication scenarios due to some limiting factors that hinder their use. This PhD thesis aims to the development of novel radio architectures and ideas based on all-digital transmitters capable of improving the adaptability and use intelligently the available resources for software de ned and cognitive radio systems. The focus of this thesis is on the improvement of some of the common limitations for all-digital transmitters such as power efficiency, bandwidth, noise-shaping and exibility while using efficient and adaptable digital architectures. In the initial part of the thesis a review of the state-of-the-art is presented showing the most common digital transmitter architectures as well as their major bene ts and key limitations. A comparative analysis of such architectures is made considering their power and spectral efficiency, exibility, performance and cost. Following this initial analysis, the work developed on the course of this PhD is presented and discussed. The initial focus is on the improvement of all-digital transmitters bandwidth trough the study and use of parallel processing techniques capable of greatly improve common bandwidth values presented in the state-of-the-art. The presented work has resulted in several publications where FPGA-based architectures use parallel digital processing techniques to improve the system's bandwidth by a factor higher than 10. Other fundamental contribution of this thesis is focused on the pulsedtransmitters coding efficiency. In this section of the thesis, a method is presented showing the reduction of the quantization noise created by low amplitude resolution digital transmitters using multiple combined pulsedtransmitters to cancel the noise in speci c frequencies. This work has resulted in two main publications that showed how to increase the coding efficiency of the pulse-transmitters as well as the overall efficiency of the transmission system. Lastly, new-noise shaping methods are presented in order to develop new and more exible architectures for all-digital transmitters. The methods presented use new quantization processes that allow for the shaping of the quantization noise produced in pulsed-transmitters while using very simple and adaptable architectures. With these new techniques, it is possible to adjust the noise frequency distribution and deliberately change the noise shape in order to change some of the transmitter's characteristics such as central frequency or bandwidth. The work presented on this thesis has shown promising improvements to the all-digital transmitters' state-of-the-art, either in simulations and laboratory prototype measurements. It has contributed to advance the state-of-the-art in agile and power efficient all-digital RF transmitters with multi-mode and multi-channel capabilities and the improvement of the transceiver's bandwidth enabling the development of true software de ned and cognitive radio systemsA próxima geração de comunicações sem os (5G) exigirá taxas de transmissão mais elevadas, maior efi ciência energética e uma melhor cobertura fazendo um uso mais efi ciente do espectro de radiofrequência e adotando o uso de arquiteturas rádio mais flexíveis. Para cumprir tais requisitos, o desenvolvimento de novos dispositivos rádio será substancialmente mais complexo do que nas gerações anteriores. O futuro das comunicações rádio depende maioritariamente de dois fatores; o baixo consumo de potência e o uso inteligente dos recursos e tecnologias disponíveis. As abordagens convencionais para a camada física dos sistemas rádio não são as mais adequadas para lidar com a necessidade de dispositivos multi-banda e que usem múltiplos standards, por serem soluções inefi cientes e demasiado caras para esse efeito. Os transmissores rádio completamente digitais têm vindo a ser apresentados na literatura como uma solução inovadora e mais flexível para a implementação dos futuros sistemas de rádio. Os transmissores completamente digitais apresentam uma implementação da cadeia de processamento rádio, desde a banda-base até à conversão para RF, completamente constituída por lógica digital. Este conceito tira partido da vasta integração alcançada nas arquiteturas digitais, juntamente com a flexibilidade proveniente da digitalização das arquiteturas rádio que já se encontra em curso com a evolução dos rádios cognitivos e definidos por software. No entanto, devido a algumas limitações inerentes à tecnologia, este tipo de transmissores ainda não é amplamente utilizado na maioria dos sistemas. Esta tese de doutoramento propõe e avalia novas arquiteturas para transmissores completamente digitais, bem como novas técnicas de processamento de sinal que possam beneficiar das tecnologias de implementação existentes (e.g. FPGAs) por forma a construir novos transmissores digitais de forma eficiente e flexível. O objetivo desta tese é reduzir as limitações atuais ainda presentes neste tipo de transmissores, nomeadamente as relacionadas com a eficiência, largura de banda, cancelamento de ruído e falta de flexibilidade. Na parte inicial desta tese é realizada a revisão do estado da arte das diversas topologias de transmissores digitais bem como as suas principais vantagens e limitações técnicas. É também feita uma análise comparativa das diversas técnicas apresentadas em termos da sua eficiência energética, flexibilidade, desempenho e custo. De seguida, é apresentado o trabalho desenvolvido no contexto desta tese de doutoramento, seguindo-se uma discussão focada na resolução das atuais limitações deste tipo de transmissores. A primeira parte foca-se no uso de técnicas de processamento paralelo de sinal, por forma a suportar sinais de largura de banda mais elevada que os reportados no atual estado da arte. O trabalho desenvolvido e publicado baseia-se no uso de arquiteturas implementadas em FPGA que contribuíram para um aumento da largura de banda num fator de aproximadamente dez vezes. Outra das contribuições fundamentais desta tese consiste no aumento da eficiência do sistema através da melhoria da eficiência de codificação do sinal pulsado produzido. Com base no uso de múltiplos transmissores pulsados, e apresentado um esquema de combinação construtiva e destrutiva de sinais para a redução do ruído de quantização proveniente das técnicas de processamento de sinal pulsado usadas. Este trabalho resultou em duas importantes publicações que mostram que a melhoria da eficiência de codificação do sinal pode ser utilizada de forma a obter uma maior eficiência energética do transmissor. Por ultimo, são apresentadas diversas técnicas para a conversão dos sinais banda-base em sinais RF pulsados. As propostas apresentadas permitem o uso de uma arquitetura de hardware simplista, mas configurável por software, o que a torna bastante flexível. Com o uso desta arquitetura e possível alterar em pleno funcionamento a frequência central bem como a largura de banda e resposta do conversor pulsado. O trabalho apresentado nesta tese demonstra alguns dos melhoramentos no estado da arte para transmissores r adio completamente digitais, baseando os resultados obtidos não apenas em simulações mas também na implementação e medidas realizadas sobre protótipos laboratoriais. O trabalho desenvolvido no âmbito desta tese contribuiu com avanços na implementação de transmissores ageis, eficientes, com maior largura de banda e capazes de transmissão em múltiplas bandas com recurso a múltiplos protocolos, abrindo caminho para o desenvolvimento de novos rádios cognitivos e definidos por softwareFCT, FSEPrograma Doutoral em Engenharia Eletrotécnic
    corecore