5,346 research outputs found

    Planar PØP: feature-less pose estimation with applications in UAV localization

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We present a featureless pose estimation method that, in contrast to current Perspective-n-Point (PnP) approaches, it does not require n point correspondences to obtain the camera pose, allowing for pose estimation from natural shapes that do not necessarily have distinguished features like corners or intersecting edges. Instead of using n correspondences (e.g. extracted with a feature detector) we will use the raw polygonal representation of the observed shape and directly estimate the pose in the pose-space of the camera. This method compared with a general PnP method, does not require n point correspondences neither a priori knowledge of the object model (except the scale), which is registered with a picture taken from a known robot pose. Moreover, we achieve higher precision because all the information of the shape contour is used to minimize the area between the projected and the observed shape contours. To emphasize the non-use of n point correspondences between the projected template and observed contour shape, we call the method Planar PØP. The method is shown both in simulation and in a real application consisting on a UAV localization where comparisons with a precise ground-truth are provided.Peer ReviewedPostprint (author's final draft

    Multi-agent pathfinding for unmanned aerial vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs), commonly known as drones, have become more and more prevalent in recent years. In particular, governmental organizations and companies around the world are starting to research how UAVs can be used to perform tasks such as package deliver, disaster investigation and surveillance of key assets such as pipelines, railroads and bridges. NASA is currently in the early stages of developing an air traffic control system specifically designed to manage UAV operations in low-altitude airspace. Companies such as Amazon and Rakuten are testing large-scale drone deliver services in the USA and Japan. To perform these tasks, safe and conflict-free routes for concurrently operating UAVs must be found. This can be done using multi-agent pathfinding (mapf) algorithms, although the correct choice of algorithms is not clear. This is because many state of the art mapf algorithms have only been tested in 2D space in maps with many obstacles, while UAVs operate in 3D space in open maps with few obstacles. In addition, when an unexpected event occurs in the airspace and UAVs are forced to deviate from their original routes while inflight, new conflict-free routes must be found. Planning for these unexpected events is commonly known as contingency planning. With manned aircraft, contingency plans can be created in advance or on a case-by-case basis while inflight. The scale at which UAVs operate, combined with the fact that unexpected events may occur anywhere at any time make both advanced planning and planning on a case-by-case basis impossible. Thus, a new approach is needed. Online multi-agent pathfinding (online mapf) looks to be a promising solution. Online mapf utilizes traditional mapf algorithms to perform path planning in real-time. That is, new routes for UAVs are found while inflight. The primary contribution of this thesis is to present one possible approach to UAV contingency planning using online multi-agent pathfinding algorithms, which can be used as a baseline for future research and development. It also provides an in-depth overview and analysis of offline mapf algorithms with the goal of determining which ones are likely to perform best when applied to UAVs. Finally, to further this same goal, a few different mapf algorithms are experimentally tested and analyzed

    A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

    Full text link
    Fully-autonomous miniaturized robots (e.g., drones), with artificial intelligence (AI) based visual navigation capabilities are extremely challenging drivers of Internet-of-Things edge intelligence capabilities. Visual navigation based on AI approaches, such as deep neural networks (DNNs) are becoming pervasive for standard-size drones, but are considered out of reach for nanodrones with size of a few cm2{}^\mathrm{2}. In this work, we present the first (to the best of our knowledge) demonstration of a navigation engine for autonomous nano-drones capable of closed-loop end-to-end DNN-based visual navigation. To achieve this goal we developed a complete methodology for parallel execution of complex DNNs directly on-bard of resource-constrained milliwatt-scale nodes. Our system is based on GAP8, a novel parallel ultra-low-power computing platform, and a 27 g commercial, open-source CrazyFlie 2.0 nano-quadrotor. As part of our general methodology we discuss the software mapping techniques that enable the state-of-the-art deep convolutional neural network presented in [1] to be fully executed on-board within a strict 6 fps real-time constraint with no compromise in terms of flight results, while all processing is done with only 64 mW on average. Our navigation engine is flexible and can be used to span a wide performance range: at its peak performance corner it achieves 18 fps while still consuming on average just 3.5% of the power envelope of the deployed nano-aircraft.Comment: 15 pages, 13 figures, 5 tables, 2 listings, accepted for publication in the IEEE Internet of Things Journal (IEEE IOTJ

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection
    • …
    corecore