3 research outputs found

    Hybrid Henry Gas Solubility Optimization: An Effective Algorithm for Fuel Consumption Vehicle Routing Problem

    Get PDF
    The depletion of non-renewable fuel reserves is the biggest problem in the logistics sector. This problem encourages the transportation sector to increase fuel efficiency in distribution activities. The fuel optimization problem in distribution routing problems is called the Fuel Consumption Vehicle Routing Problem (FCVRP). This study proposes a novel Hybrid Henry Gas Solubility Optimization (HHGSO) to solve FCVRP problems. Experiments with several parameter variants were carried out to determine the performance of HHGSO in optimizing fuel consumption. The results show that the parameters of the HHGSO algorithm affect fuel consumption and computation time. In addition, the higher the KPL, the smaller the resulting fuel consumption. The proposed algorithm is also compared with several algorithms. The comparison results show that the proposed algorithm produces better computational time and fuel consumption than the Hybrid Particle Swarm Optimization and Tabu Search algorithms

    An Efficient Two-Objective Hybrid Local Search Algorithm for Solving the Fuel Consumption Vehicle Routing Problem

    No full text
    The classical model of vehicle routing problem (VRP) generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP) becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is measured through the degree of road gradient. Complexity analysis of FCVRP is presented through analogy with the capacitated VRP. To tackle the FCVRP’s computational intractability, we propose an efficient two-objective hybrid local search algorithm (TOHLS). TOHLS is based on a hybrid local search algorithm (HLS) that is also used to solve FCVRP. Based on the Golden CVRP benchmarks, 60 FCVRP instances are generated and tested. Finally, the computational results show that the proposed TOHLS significantly outperforms the HLS
    corecore