6,344 research outputs found

    RoomNet: End-to-End Room Layout Estimation

    Full text link
    This paper focuses on the task of room layout estimation from a monocular RGB image. Prior works break the problem into two sub-tasks: semantic segmentation of floor, walls, ceiling to produce layout hypotheses, followed by an iterative optimization step to rank these hypotheses. In contrast, we adopt a more direct formulation of this problem as one of estimating an ordered set of room layout keypoints. The room layout and the corresponding segmentation is completely specified given the locations of these ordered keypoints. We predict the locations of the room layout keypoints using RoomNet, an end-to-end trainable encoder-decoder network. On the challenging benchmark datasets Hedau and LSUN, we achieve state-of-the-art performance along with 200x to 600x speedup compared to the most recent work. Additionally, we present optional extensions to the RoomNet architecture such as including recurrent computations and memory units to refine the keypoint locations under the same parametric capacity.Comment: accepted at ICCV 201

    Tracking shocked dust: state estimation for a complex plasma during a shock wave

    Full text link
    We consider a two-dimensional complex (dusty) plasma crystal excited by an electrostatically-induced shock wave. Dust particle kinematics in such a system are usually determined using particle tracking velocimetry. In this work we present a particle tracking algorithm which determines the dust particle kinematics with significantly higher accuracy than particle tracking velocimetry. The algorithm uses multiple extended Kalman filters to estimate the particle states and an interacting multiple model to assign probabilities to the different filters. This enables the determination of relevant physical properties of the dust, such as kinetic energy and kinetic temperature, with high precision. We use a Hugoniot shock-jump relation to calculate a pressure-volume diagram from the shocked dust kinematics. Calculation of the full pressure-volume diagram was possible with our tracking algorithm, but not with particle tracking velocimetry.Comment: 10 pages, 8 figures, accepted for publication in Physics of Plasma

    Machine learning in acoustics: theory and applications

    Full text link
    Acoustic data provide scientific and engineering insights in fields ranging from biology and communications to ocean and Earth science. We survey the recent advances and transformative potential of machine learning (ML), including deep learning, in the field of acoustics. ML is a broad family of techniques, which are often based in statistics, for automatically detecting and utilizing patterns in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given sufficient training data, ML can discover complex relationships between features and desired labels or actions, or between features themselves. With large volumes of training data, ML can discover models describing complex acoustic phenomena such as human speech and reverberation. ML in acoustics is rapidly developing with compelling results and significant future promise. We first introduce ML, then highlight ML developments in four acoustics research areas: source localization in speech processing, source localization in ocean acoustics, bioacoustics, and environmental sounds in everyday scenes.Comment: Published with free access in Journal of the Acoustical Society of America, 27 Nov. 201

    Machine learning based hyperspectral image analysis: A survey

    Full text link
    Hyperspectral sensors enable the study of the chemical properties of scene materials remotely for the purpose of identification, detection, and chemical composition analysis of objects in the environment. Hence, hyperspectral images captured from earth observing satellites and aircraft have been increasingly important in agriculture, environmental monitoring, urban planning, mining, and defense. Machine learning algorithms due to their outstanding predictive power have become a key tool for modern hyperspectral image analysis. Therefore, a solid understanding of machine learning techniques have become essential for remote sensing researchers and practitioners. This paper reviews and compares recent machine learning-based hyperspectral image analysis methods published in literature. We organize the methods by the image analysis task and by the type of machine learning algorithm, and present a two-way mapping between the image analysis tasks and the types of machine learning algorithms that can be applied to them. The paper is comprehensive in coverage of both hyperspectral image analysis tasks and machine learning algorithms. The image analysis tasks considered are land cover classification, target detection, unmixing, and physical parameter estimation. The machine learning algorithms covered are Gaussian models, linear regression, logistic regression, support vector machines, Gaussian mixture model, latent linear models, sparse linear models, Gaussian mixture models, ensemble learning, directed graphical models, undirected graphical models, clustering, Gaussian processes, Dirichlet processes, and deep learning. We also discuss the open challenges in the field of hyperspectral image analysis and explore possible future directions

    Audio Surveillance: a Systematic Review

    Full text link
    Despite surveillance systems are becoming increasingly ubiquitous in our living environment, automated surveillance, currently based on video sensory modality and machine intelligence, lacks most of the time the robustness and reliability required in several real applications. To tackle this issue, audio sensory devices have been taken into account, both alone or in combination with video, giving birth, in the last decade, to a considerable amount of research. In this paper audio-based automated surveillance methods are organized into a comprehensive survey: a general taxonomy, inspired by the more widespread video surveillance field, is proposed in order to systematically describe the methods covering background subtraction, event classification, object tracking and situation analysis. For each of these tasks, all the significant works are reviewed, detailing their pros and cons and the context for which they have been proposed. Moreover, a specific section is devoted to audio features, discussing their expressiveness and their employment in the above described tasks. Differently, from other surveys on audio processing and analysis, the present one is specifically targeted to automated surveillance, highlighting the target applications of each described methods and providing the reader tables and schemes useful to retrieve the most suited algorithms for a specific requirement

    Spatio-temporal Video Parsing for Abnormality Detection

    Full text link
    Abnormality detection in video poses particular challenges due to the infinite size of the class of all irregular objects and behaviors. Thus no (or by far not enough) abnormal training samples are available and we need to find abnormalities in test data without actually knowing what they are. Nevertheless, the prevailing concept of the field is to directly search for individual abnormal local patches or image regions independent of another. To address this problem, we propose a method for joint detection of abnormalities in videos by spatio-temporal video parsing. The goal of video parsing is to find a set of indispensable normal spatio-temporal object hypotheses that jointly explain all the foreground of a video, while, at the same time, being supported by normal training samples. Consequently, we avoid a direct detection of abnormalities and discover them indirectly as those hypotheses which are needed for covering the foreground without finding an explanation for themselves by normal samples. Abnormalities are localized by MAP inference in a graphical model and we solve it efficiently by formulating it as a convex optimization problem. We experimentally evaluate our approach on several challenging benchmark sets, improving over the state-of-the-art on all standard benchmarks both in terms of abnormality classification and localization.Comment: 15 pages, 12 figures, 3 table

    2CoBel : An Efficient Belief Function Extension for Two-dimensional Continuous Spaces

    Full text link
    This paper introduces an innovative approach for handling 2D compound hypotheses within the Belief Function Theory framework. We propose a polygon-based generic rep- resentation which relies on polygon clipping operators. This approach allows us to account in the computational cost for the precision of the representation independently of the cardinality of the discernment frame. For the BBA combination and decision making, we propose efficient algorithms which rely on hashes for fast lookup, and on a topological ordering of the focal elements within a directed acyclic graph encoding their interconnections. Additionally, an implementation of the functionalities proposed in this paper is provided as an open source library. Experimental results on a pedestrian localization problem are reported. The experiments show that the solution is accurate and that it fully benefits from the scalability of the 2D search space granularity provided by our representation

    On Testing Machine Learning Programs

    Full text link
    Nowadays, we are witnessing a wide adoption of Machine learning (ML) models in many safety-critical systems, thanks to recent breakthroughs in deep learning and reinforcement learning. Many people are now interacting with systems based on ML every day, e.g., voice recognition systems used by virtual personal assistants like Amazon Alexa or Google Home. As the field of ML continues to grow, we are likely to witness transformative advances in a wide range of areas, from finance, energy, to health and transportation. Given this growing importance of ML-based systems in our daily life, it is becoming utterly important to ensure their reliability. Recently, software researchers have started adapting concepts from the software testing domain (e.g., code coverage, mutation testing, or property-based testing) to help ML engineers detect and correct faults in ML programs. This paper reviews current existing testing practices for ML programs. First, we identify and explain challenges that should be addressed when testing ML programs. Next, we report existing solutions found in the literature for testing ML programs. Finally, we identify gaps in the literature related to the testing of ML programs and make recommendations of future research directions for the scientific community. We hope that this comprehensive review of software testing practices will help ML engineers identify the right approach to improve the reliability of their ML-based systems. We also hope that the research community will act on our proposed research directions to advance the state of the art of testing for ML programs.Comment: This manuscript is part of a submission to the Journal of Systems and Softwar

    Joining Sound Event Detection and Localization Through Spatial Segregation

    Full text link
    Identification and localization of sounds are both integral parts of computational auditory scene analysis. Although each can be solved separately, the goal of forming coherent auditory objects and achieving a comprehensive spatial scene understanding suggests pursuing a joint solution of the two problems. This work presents an approach that robustly binds localization with the detection of sound events in a binaural robotic system. Both tasks are joined through the use of spatial stream segregation which produces probabilistic time-frequency masks for individual sources attributable to separate locations, enabling segregated sound event detection operating on these streams. We use simulations of a comprehensive suite of test scenes with multiple co-occurring sound sources, and propose performance measures for systematic investigation of the impact of scene complexity on this segregated detection of sound types. Analyzing the effect of spatial scene arrangement, we show how a robot could facilitate high performance through optimal head rotation. Furthermore, we investigate the performance of segregated detection given possible localization error as well as error in the estimation of number of active sources. Our analysis demonstrates that the proposed approach is an effective method to obtain joint sound event location and type information under a wide range of conditions.Comment: Accepted for publication in IEEE/ACM Transactions on Audio, Speech, and Language Processin

    High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel

    Full text link
    We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly-available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and Widmanst\"atten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The full annotated dataset is available on materialsdata.nist.gov (https://materialsdata.nist.gov/handle/11256/964).Comment: Updated with minor revisions reflecting the review process at Microscopy and Microanalysis. Full supplementary materials will be available at https://holmgroup.github.io/publications
    corecore