15 research outputs found

    Pattern Approximation Based Generalized Image Noise Reduction Using Adaptive Feedforward Neural Network

    Get PDF
    The problem of noise interference with the image always occurs irrespective of whatever precaution is taken. Challenging issues with noise reduction are diversity of characteristics involved with source of noise and in result; it is difficult to develop a universal solution. This paper has proposed neural network based generalize solution of noise reduction by mapping the problem as pattern approximation. Considering the statistical relationship among local region pixels in the noise free image as normal patterns, feedforward neural network is applied to acquire the knowledge available within such patterns. Adaptiveness is applied in the slope of transfer function to improve the learning process. Acquired normal patterns knowledge is utilized to reduce the level of different type of noise available within an image by recorrection of noisy patterns through pattern approximation. The proposed restoration method does not need any estimation of noise model characteristics available in the image not only that it can reduce the mixer of different types of noise efficiently. The proposed method has high processing speed along with simplicity in design. Restoration of gray scale image as well as color image has done, which has suffered from different types of noise like, Gaussian noise, salt &peper, speckle noise and mixer of it

    Noise Reduction Using Singular Value Decomposition with Jensen–Shannon Divergence for Coronary Computed Tomography Angiography

    Get PDF
    Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating the imaging of the beating heart in a stationary state. However, reconstructed CT images, including those of the coronary arteries, contain insufficient X-ray photons and considerable noise. In this study, we introduce an image-processing technique for noise reduction using singular value decomposition (SVD) for CCTA images. The threshold of SVD was determined on the basis of minimization of Jensen–Shannon (JS) divergence. Experiments were performed with various numerical phantoms and varying levels of noise to reduce noise in clinical CCTA images using the determined threshold value. The numerical phantoms produced 10% higher-quality images than the conventional noise reduction method when compared on a quantitative SSIM basis. The threshold value determined by minimizing the JS–divergence was found to be useful for efficient noise reduction in actual clinical images, depending on the level of noise

    A Fast and Robust Key Frame Extraction Method for Video Copyright Protection

    Get PDF

    Tensor Robust PCA with Nonconvex and Nonlocal Regularization

    Full text link
    Tensor robust principal component analysis (TRPCA) is a promising way for low-rank tensor recovery, which minimizes the convex surrogate of tensor rank by shrinking each tensor singular values equally. However, for real-world visual data, large singular values represent more signifiant information than small singular values. In this paper, we propose a nonconvex TRPCA (N-TRPCA) model based on the tensor adjustable logarithmic norm. Unlike TRPCA, our N-TRPCA can adaptively shrink small singular values more and shrink large singular values less. In addition, TRPCA assumes that the whole data tensor is of low rank. This assumption is hardly satisfied in practice for natural visual data, restricting the capability of TRPCA to recover the edges and texture details from noisy images and videos. To this end, we integrate nonlocal self-similarity into N-TRPCA, and further develop a nonconvex and nonlocal TRPCA (NN-TRPCA) model. Specifically, similar nonlocal patches are grouped as a tensor and then each group tensor is recovered by our N-TRPCA. Since the patches in one group are highly correlated, all group tensors have strong low-rank property, leading to an improvement of recovery performance. Experimental results demonstrate that the proposed NN-TRPCA outperforms some existing TRPCA methods in visual data recovery. The demo code is available at https://github.com/qguo2010/NN-TRPCA.Comment: 19 pages, 7 figure
    corecore