89,222 research outputs found

    Scalable Probabilistic Similarity Ranking in Uncertain Databases (Technical Report)

    Get PDF
    This paper introduces a scalable approach for probabilistic top-k similarity ranking on uncertain vector data. Each uncertain object is represented by a set of vector instances that are assumed to be mutually-exclusive. The objective is to rank the uncertain data according to their distance to a reference object. We propose a framework that incrementally computes for each object instance and ranking position, the probability of the object falling at that ranking position. The resulting rank probability distribution can serve as input for several state-of-the-art probabilistic ranking models. Existing approaches compute this probability distribution by applying a dynamic programming approach of quadratic complexity. In this paper we theoretically as well as experimentally show that our framework reduces this to a linear-time complexity while having the same memory requirements, facilitated by incremental accessing of the uncertain vector instances in increasing order of their distance to the reference object. Furthermore, we show how the output of our method can be used to apply probabilistic top-k ranking for the objects, according to different state-of-the-art definitions. We conduct an experimental evaluation on synthetic and real data, which demonstrates the efficiency of our approach

    On Quantifying Qualitative Geospatial Data: A Probabilistic Approach

    Full text link
    Living in the era of data deluge, we have witnessed a web content explosion, largely due to the massive availability of User-Generated Content (UGC). In this work, we specifically consider the problem of geospatial information extraction and representation, where one can exploit diverse sources of information (such as image and audio data, text data, etc), going beyond traditional volunteered geographic information. Our ambition is to include available narrative information in an effort to better explain geospatial relationships: with spatial reasoning being a basic form of human cognition, narratives expressing such experiences typically contain qualitative spatial data, i.e., spatial objects and spatial relationships. To this end, we formulate a quantitative approach for the representation of qualitative spatial relations extracted from UGC in the form of texts. The proposed method quantifies such relations based on multiple text observations. Such observations provide distance and orientation features which are utilized by a greedy Expectation Maximization-based (EM) algorithm to infer a probability distribution over predefined spatial relationships; the latter represent the quantified relationships under user-defined probabilistic assumptions. We evaluate the applicability and quality of the proposed approach using real UGC data originating from an actual travel blog text corpus. To verify the quality of the result, we generate grid-based maps visualizing the spatial extent of the various relations

    A Hierarchal Planning Framework for AUV Mission Management in a Spatio-Temporal Varying Ocean

    Full text link
    The purpose of this paper is to provide a hierarchical dynamic mission planning framework for a single autonomous underwater vehicle (AUV) to accomplish task-assign process in a limited time interval while operating in an uncertain undersea environment, where spatio-temporal variability of the operating field is taken into account. To this end, a high level reactive mission planner and a low level motion planning system are constructed. The high level system is responsible for task priority assignment and guiding the vehicle toward a target of interest considering on-time termination of the mission. The lower layer is in charge of generating optimal trajectories based on sequence of tasks and dynamicity of operating terrain. The mission planner is able to reactively re-arrange the tasks based on mission/terrain updates while the low level planner is capable of coping unexpected changes of the terrain by correcting the old path and re-generating a new trajectory. As a result, the vehicle is able to undertake the maximum number of tasks with certain degree of maneuverability having situational awareness of the operating field. The computational engine of the mentioned framework is based on the biogeography based optimization (BBO) algorithm that is capable of providing efficient solutions. To evaluate the performance of the proposed framework, firstly, a realistic model of undersea environment is provided based on realistic map data, and then several scenarios, treated as real experiments, are designed through the simulation study. Additionally, to show the robustness and reliability of the framework, Monte-Carlo simulation is carried out and statistical analysis is performed. The results of simulations indicate the significant potential of the two-level hierarchical mission planning system in mission success and its applicability for real-time implementation
    • …
    corecore