3,123 research outputs found

    An Efficient Reduced Basis Solver for Stochastic Galerkin Matrix Equations

    Full text link

    Reduced basis solver for stochastic Galerkin formulation of Darcy flow with uncertain material parameters

    Get PDF
    summary:In this contribution, we present a solution to the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with uncertain material coefficients in the separable form. The SG system of equations is kept in the compressed tensor form and its solution is a very challenging task. Here, we present the reduced basis (RB) method as a solver which looks for a low-rank representation of the solution. The construction of the RB consists of iterative expanding of the basis using Monte Carlo sampling. We discuss the setting of the sampling procedure and an efficient solution of multiple similar systems emerging during the sampling procedure using deflation. We conclude with a demonstration of the use of SG solution for forward uncertainty quantification

    Factorizing the Stochastic Galerkin System

    Full text link
    Recent work has explored solver strategies for the linear system of equations arising from a spectral Galerkin approximation of the solution of PDEs with parameterized (or stochastic) inputs. We consider the related problem of a matrix equation whose matrix and right hand side depend on a set of parameters (e.g. a PDE with stochastic inputs semidiscretized in space) and examine the linear system arising from a similar Galerkin approximation of the solution. We derive a useful factorization of this system of equations, which yields bounds on the eigenvalues, clues to preconditioning, and a flexible implementation method for a wide array of problems. We complement this analysis with (i) a numerical study of preconditioners on a standard elliptic PDE test problem and (ii) a fluids application using existing CFD codes; the MATLAB codes used in the numerical studies are available online.Comment: 13 pages, 4 figures, 2 table

    A Bramble-Pasciak conjugate gradient method for discrete Stokes equations with random viscosity

    Full text link
    We study the iterative solution of linear systems of equations arising from stochastic Galerkin finite element discretizations of saddle point problems. We focus on the Stokes model with random data parametrized by uniformly distributed random variables and discuss well-posedness of the variational formulations. We introduce a Bramble-Pasciak conjugate gradient method as a linear solver. It builds on a non-standard inner product associated with a block triangular preconditioner. The block triangular structure enables more sophisticated preconditioners than the block diagonal structure usually applied in MINRES methods. We show how the existence requirements of a conjugate gradient method can be met in our setting. We analyze the performance of the solvers depending on relevant physical and numerical parameters by means of eigenvalue estimates. For this purpose, we derive bounds for the eigenvalues of the relevant preconditioned sub-matrices. We illustrate our findings using the flow in a driven cavity as a numerical test case, where the viscosity is given by a truncated Karhunen-Lo\`eve expansion of a random field. In this example, a Bramble-Pasciak conjugate gradient method with block triangular preconditioner outperforms a MINRES method with block diagonal preconditioner in terms of iteration numbers.Comment: 19 pages, 1 figure, submitted to SIAM JU
    • …
    corecore