1,485 research outputs found

    Multiuser Precoding and Channel Estimation for Hybrid Millimeter Wave MIMO Systems

    Full text link
    In this paper, we develop a low-complexity channel estimation for hybrid millimeter wave (mmWave) systems, where the number of radio frequency (RF) chains is much less than the number of antennas equipped at each transceiver. The proposed channel estimation algorithm aims to estimate the strongest angle-of-arrivals (AoAs) at both the base station (BS) and the users. Then all the users transmit orthogonal pilot symbols to the BS via these estimated strongest AoAs to facilitate the channel estimation. The algorithm does not require any explicit channel state information (CSI) feedback from the users and the associated signalling overhead of the algorithm is only proportional to the number of users, which is significantly less compared to various existing schemes. Besides, the proposed algorithm is applicable to both non-sparse and sparse mmWave channel environments. Based on the estimated CSI, zero-forcing (ZF) precoding is adopted for multiuser downlink transmission. In addition, we derive a tight achievable rate upper bound of the system. Our analytical and simulation results show that the proposed scheme offer a considerable achievable rate gain compared to fully digital systems, where the number of RF chains equipped at each transceiver is equal to the number of antennas. Furthermore, the achievable rate performance gap between the considered hybrid mmWave systems and the fully digital system is characterized, which provides useful system design insights.Comment: 6 pages, accepted for presentation, ICC 201

    Multiuser Millimeter Wave Beamforming Strategies with Quantized and Statistical CSIT

    Full text link
    To alleviate the high cost of hardware in mmWave systems, hybrid analog/digital precoding is typically employed. In the conventional two-stage feedback scheme, the analog beamformer is determined by beam search and feedback to maximize the desired signal power of each user. The digital precoder is designed based on quantization and feedback of effective channel to mitigate multiuser interference. Alternatively, we propose a one-stage feedback scheme which effectively reduces the complexity of the signalling and feedback procedure. Specifically, the second-order channel statistics are leveraged to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. Under a fixed total feedback constraint, we investigate the conditions under which the one-stage feedback scheme outperforms the conventional two-stage counterpart. Moreover, a rate splitting (RS) transmission strategy is introduced to further tackle the multiuser interference and enhance the rate performance. Consider (1) RS precoded by the one-stage feedback scheme and (2) conventional transmission strategy precoded by the two-stage scheme with the same first-stage feedback as (1) and also certain amount of extra second-stage feedback. We show that (1) can achieve a sum rate comparable to that of (2). Hence, RS enables remarkable saving in the second-stage training and feedback overhead.Comment: submitted to TW

    Channel Estimation for mmWave Massive MIMO Based Access and Backhaul in Ultra-Dense Network

    Full text link
    Millimeter-wave (mmWave) massive MIMO used for access and backhaul in ultra-dense network (UDN) has been considered as the promising 5G technique. We consider such an heterogeneous network (HetNet) that ultra-dense small base stations (BSs) exploit mmWave massive MIMO for access and backhaul, while macrocell BS provides the control service with low frequency band. However, the channel estimation for mmWave massive MIMO can be challenging, since the pilot overhead to acquire the channels associated with a large number of antennas in mmWave massive MIMO can be prohibitively high. This paper proposes a structured compressive sensing (SCS)-based channel estimation scheme, where the angular sparsity of mmWave channels is exploited to reduce the required pilot overhead. Specifically, since the path loss for non-line-of-sight paths is much larger than that for line-of-sight paths, the mmWave massive channels in the angular domain appear the obvious sparsity. By exploiting such sparsity, the required pilot overhead only depends on the small number of dominated multipath. Moreover, the sparsity within the system bandwidth is almost unchanged, which can be exploited for the further improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterpart, and it can approach the performance bound.Comment: 6 pages, 5 figures. Millimeter-wave (mmWave), mmWave massive MIMO, compressive sensing (CS), hybrid precoding, channel estimation, access, backhaul, ultra-dense network (UDN), heterogeneous network (HetNet). arXiv admin note: substantial text overlap with arXiv:1604.03695, IEEE International Conference on Communications (ICC'16), May 2016, Kuala Lumpur, Malaysi
    • …
    corecore