529 research outputs found

    Implications of non-volatile memory as primary storage for database management systems

    Get PDF
    Traditional Database Management System (DBMS) software relies on hard disks for storing relational data. Hard disks are cheap, persistent, and offer huge storage capacities. However, data retrieval latency for hard disks is extremely high. To hide this latency, DRAM is used as an intermediate storage. DRAM is significantly faster than disk, but deployed in smaller capacities due to cost and power constraints, and without the necessary persistency feature that disks have. Non-Volatile Memory (NVM) is an emerging storage class technology which promises the best of both worlds. It can offer large storage capacities, due to better scaling and cost metrics than DRAM, and is non-volatile (persistent) like hard disks. At the same time, its data retrieval time is much lower than that of hard disks and it is also byte-addressable like DRAM. In this paper, we explore the implications of employing NVM as primary storage for DBMS. In other words, we investigate the modifications necessary to be applied on a traditional relational DBMS to take advantage of NVM features. As a case study, we have modified the storage engine (SE) of PostgreSQL enabling efficient use of NVM hardware. We detail the necessary changes and challenges such modifications entail and evaluate them using a comprehensive emulation platform. Results indicate that our modified SE reduces query execution time by up to 40% and 14.4% when compared to disk and NVM storage, with average reductions of 20.5% and 4.5%, respectively.The research leading to these results has received funding from the European Union’s 7th Framework Programme under grant agreement number 318633, the Ministry of Science and Technology of Spain under contract TIN2015-65316-P, and a HiPEAC collaboration grant awarded to Naveed Ul Mustafa.Peer ReviewedPostprint (author's final draft

    An NVM Aware MariaDB Database System and Associated IO Workload on File Systems

    Get PDF
    MariaDB is a community-developed fork of the MySQL relational database management system and originally designed and implemented in order to use the traditional spinning disk architecture. With Non-Volatile memory (NVM) technology now in the forefront and main stream for server storage (Data centers), MariaDB addresses the need by adding support for NVM devices and introduces NVM Compression method. NVM Compression is a novel hybrid technique that combines application level compression with flash awareness for optimal performance and storage efficiency. Utilizing new interface primitives exported by Flash Translation Layers (FTLs), we leverage the garbage collection available in flash devices to optimize the capacity management required by compression systems. We implement NVM Compression in the popular MariaDB database and use variants of commonly available POSIX file system interfaces to provide the extended FTL capabilities to the user space application. The experimental results show that the hybrid approach of NVM Compression can improve compression performance by 2-7x, deliver compression performance for flash devices that is within 5% of uncompressed performance, improve storage efficiency by 19% over legacy Row-Compression, reduce data writes by up to 4x when combined with other flash aware techniques such as Atomic Writes, and deliver further advantages in power efficiency and CPU utilization. Various micro benchmark measurement and findings on sparse files call for required improvement in file systems for handling of punch hole operations on files

    Optimal Checkpointing for Secure Intermittently-Powered IoT Devices

    Full text link
    Energy harvesting is a promising solution to power Internet of Things (IoT) devices. Due to the intermittent nature of these energy sources, one cannot guarantee forward progress of program execution. Prior work has advocated for checkpointing the intermediate state to off-chip non-volatile memory (NVM). Encrypting checkpoints addresses the security concern, but significantly increases the checkpointing overheads. In this paper, we propose a new online checkpointing policy that judiciously determines when to checkpoint so as to minimize application time to completion while guaranteeing security. Compared to state-of-the-art checkpointing schemes that do not account for the overheads of encrypted checkpoints we improve execution time up to 1.4x.Comment: ICCAD 201
    • …
    corecore