6,259 research outputs found

    Optimal randomized incremental construction for guaranteed logarithmic planar point location

    Full text link
    Given a planar map of nn segments in which we wish to efficiently locate points, we present the first randomized incremental construction of the well-known trapezoidal-map search-structure that only requires expected O(nlogn)O(n \log n) preprocessing time while deterministically guaranteeing worst-case linear storage space and worst-case logarithmic query time. This settles a long standing open problem; the best previously known construction time of such a structure, which is based on a directed acyclic graph, so-called the history DAG, and with the above worst-case space and query-time guarantees, was expected O(nlog2n)O(n \log^2 n). The result is based on a deeper understanding of the structure of the history DAG, its depth in relation to the length of its longest search path, as well as its correspondence to the trapezoidal search tree. Our results immediately extend to planar maps induced by finite collections of pairwise interior disjoint well-behaved curves.Comment: The article significantly extends the theoretical aspects of the work presented in http://arxiv.org/abs/1205.543

    Improved Implementation of Point Location in General Two-Dimensional Subdivisions

    Full text link
    We present a major revamp of the point-location data structure for general two-dimensional subdivisions via randomized incremental construction, implemented in CGAL, the Computational Geometry Algorithms Library. We can now guarantee that the constructed directed acyclic graph G is of linear size and provides logarithmic query time. Via the construction of the Voronoi diagram for a given point set S of size n, this also enables nearest-neighbor queries in guaranteed O(log n) time. Another major innovation is the support of general unbounded subdivisions as well as subdivisions of two-dimensional parametric surfaces such as spheres, tori, cylinders. The implementation is exact, complete, and general, i.e., it can also handle non-linear subdivisions. Like the previous version, the data structure supports modifications of the subdivision, such as insertions and deletions of edges, after the initial preprocessing. A major challenge is to retain the expected O(n log n) preprocessing time while providing the above (deterministic) space and query-time guarantees. We describe an efficient preprocessing algorithm, which explicitly verifies the length L of the longest query path in O(n log n) time. However, instead of using L, our implementation is based on the depth D of G. Although we prove that the worst case ratio of D and L is Theta(n/log n), we conjecture, based on our experimental results, that this solution achieves expected O(n log n) preprocessing time.Comment: 21 page

    Transit Node Routing Reconsidered

    Full text link
    Transit Node Routing (TNR) is a fast and exact distance oracle for road networks. We show several new results for TNR. First, we give a surprisingly simple implementation fully based on Contraction Hierarchies that speeds up preprocessing by an order of magnitude approaching the time for just finding a CH (which alone has two orders of magnitude larger query time). We also develop a very effective purely graph theoretical locality filter without any compromise in query times. Finally, we show that a specialization to the online many-to-one (or one-to-many) shortest path further speeds up query time by an order of magnitude. This variant even has better query time than the fastest known previous methods which need much more space.Comment: 19 pages, submitted to SEA'201

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm
    corecore