251 research outputs found

    Multi-objective Evolutionary Algorithms are Still Good: Maximizing Monotone Approximately Submodular Minus Modular Functions

    Full text link
    As evolutionary algorithms (EAs) are general-purpose optimization algorithms, recent theoretical studies have tried to analyze their performance for solving general problem classes, with the goal of providing a general theoretical explanation of the behavior of EAs. Particularly, a simple multi-objective EA, i.e., GSEMO, has been shown to be able to achieve good polynomial-time approximation guarantees for submodular optimization, where the objective function is only required to satisfy some properties but without explicit formulation. Submodular optimization has wide applications in diverse areas, and previous studies have considered the cases where the objective functions are monotone submodular, monotone non-submodular, or non-monotone submodular. To complement this line of research, this paper studies the problem class of maximizing monotone approximately submodular minus modular functions (i.e., f=gβˆ’cf=g-c) with a size constraint, where gg is a non-negative monotone approximately submodular function and cc is a non-negative modular function, resulting in the objective function ff being non-monotone non-submodular. We prove that the GSEMO can achieve the best-known polynomial-time approximation guarantee. Empirical studies on the applications of Bayesian experimental design and directed vertex cover show the excellent performance of the GSEMO

    Interactive Camera Network Design using a Virtual Reality Interface

    Full text link
    Traditional literature on camera network design focuses on constructing automated algorithms. These require problem specific input from experts in order to produce their output. The nature of the required input is highly unintuitive leading to an unpractical workflow for human operators. In this work we focus on developing a virtual reality user interface allowing human operators to manually design camera networks in an intuitive manner. From real world practical examples we conclude that the camera networks designed using this interface are highly competitive with, or superior to those generated by automated algorithms, but the associated workflow is much more intuitive and simple. The competitiveness of the human-generated camera networks is remarkable because the structure of the optimization problem is a well known combinatorial NP-hard problem. These results indicate that human operators can be used in challenging geometrical combinatorial optimization problems given an intuitive visualization of the problem.Comment: 11 pages, 8 figure

    Parameterized Complexity Analysis of Randomized Search Heuristics

    Full text link
    This chapter compiles a number of results that apply the theory of parameterized algorithmics to the running-time analysis of randomized search heuristics such as evolutionary algorithms. The parameterized approach articulates the running time of algorithms solving combinatorial problems in finer detail than traditional approaches from classical complexity theory. We outline the main results and proof techniques for a collection of randomized search heuristics tasked to solve NP-hard combinatorial optimization problems such as finding a minimum vertex cover in a graph, finding a maximum leaf spanning tree in a graph, and the traveling salesperson problem.Comment: This is a preliminary version of a chapter in the book "Theory of Evolutionary Computation: Recent Developments in Discrete Optimization", edited by Benjamin Doerr and Frank Neumann, published by Springe

    Maximum n-times Coverage for Vaccine Design

    Full text link
    We introduce the maximum nn-times coverage problem that selects kk overlays to maximize the summed coverage of weighted elements, where each element must be covered at least nn times. We also define the min-cost nn-times coverage problem where the objective is to select the minimum set of overlays such that the sum of the weights of elements that are covered at least nn times is at least Ο„\tau. Maximum nn-times coverage is a generalization of the multi-set multi-cover problem, is NP-complete, and is not submodular. We introduce two new practical solutions for nn-times coverage based on integer linear programming and sequential greedy optimization. We show that maximum nn-times coverage is a natural way to frame peptide vaccine design, and find that it produces a pan-strain COVID-19 vaccine design that is superior to 29 other published designs in predicted population coverage and the expected number of peptides displayed by each individual's HLA molecules.Comment: 10 pages, 5 figure
    • …
    corecore