1 research outputs found

    An efficient distributed group mutual exclusion algorithm for non-uniform group access

    No full text
    In the group mutual exclusion problem, each critical section has a type or a group associated with it. Processes requesting critical sections of the same type may execute their critical sections concurrently. However, processes requesting critical sections of different types must execute their critical sections in a mutually exclusive manner. Most algorithms for group mutual exclusion that have been proposed so far implicitly assume that all groups are equally likely to be requested. In this paper, we propose an efficient algorithm for solving the problem when a relatively small number of groups are requested more frequently than others. Our algorithm has a message complexity of 2n βˆ’ 1 per request for critical section, where n is the number of processes in the system. It has low synchronization delay of t and low waiting time of 2t, where t denotes the maximum message delay. The maximum concurrency of our algorithm is n, which implies that if all processes have requested critical sections of the same type, then all of them may execute their critical sections concurrently. Finally, the amortized message overhead of our algorithm is O(1). Our experimental results indicate that our algorithm outperforms the existing algorithms by as much as 50 % in some cases
    corecore