4,119 research outputs found

    Physics of thin-film ferroelectric oxides

    Full text link
    This review covers the important advances in recent years in the physics of thin film ferroelectric oxides, the strongest emphasis being on those aspects particular to ferroelectrics in thin film form. We introduce the current state of development in the application of ferroelectric thin films for electronic devices and discuss the physics relevant for the performance and failure of these devices. Following this we cover the enormous progress that has been made in the first principles computational approach to understanding ferroelectrics. We then discuss in detail the important role that strain plays in determining the properties of epitaxial thin ferroelectric films. Finally, we look at the emerging possibilities for nanoscale ferroelectrics, with particular emphasis on ferroelectrics in non conventional nanoscale geometries.Comment: This is an invited review for Reviews of Modern Physics. We welcome feedback and will endeavour to incorporate comments received promptly into the final versio

    Electroforming and switching of organic-inorganic resistive memories

    Get PDF

    Ferroelectric tunnel junctions with graphene electrodes

    Get PDF
    Polarization-driven resistive switching in ferroelectric tunnel junctions (FTJs)—structures composed of two electrodes separated by an ultrathin ferroelectric barrier—offers new physics and materials functionalities, as well as exciting opportunities for the next generation of non-volatile memories and logic devices. Performance of FTJs is highly sensitive to the electrical boundary conditions, which can be controlled by electrode material and/or interface engineering. Here, we demonstrate the use of graphene as electrodes in FTJs that allows control of interface properties for significant enhancement of device performance. Ferroelectric polarization stability and resistive switching are strongly affected by a molecular layer at the graphene/BaTiO3 interface. For the FTJ with the interfacial ammonia layer we find an enhanced tunnelling electroresistance (TER) effect of 6 x 105%. The obtained results demonstrate a new approach based on using graphene electrodes for interface-facilitated polarization stability and enhancement of the TER effect, which can be exploited in the FTJbased devices

    Multivariate analysis and extraction of parameters in resistive RAMs using the Quantum Point Contact model

    Get PDF
    A multivariate analysis of the parameters that characterize the reset process in RRAMs has been performed. The different correlations obtained can help to shed light on the current components that contribute in the Low Resistance State (LRS) of the technology considered. In addition, a screening method for the Quantum Point Contact (QPC) current component is presented. For this purpose the second derivative of the current has been obtained using a novel numerical method which allows determining the QPC model parameters. Once the procedure is completed, a whole RS series of thousands of curves is studied by means of a genetic algorithm. The extracted QPC parameter distributions are characterized in depth to get information about the filamentary pathways associated with LRS in the low voltage conduction regime.Spanish Ministry of Economy and Competitiveness TEC2014-52152-C3-2-R , MTM2013-47929-P (also supported by the FEDER program)IMB-CNM Spanish Ministry of Economy and Competitiveness TEC2014-52152-C3-1-R and TEC2014-54906-JIN (supported by the FEDER program)ENIAC Joint Undertaking-PANACHE project.Spanish ICTS Network MICRONANOFAB

    Nanoscale resistive switching memory devices: a review

    Get PDF
    In this review the different concepts of nanoscale resistive switching memory devices are described and classified according to their I–V behaviour and the underlying physical switching mechanisms. By means of the most important representative devices, the current state of electrical performance characteristics is illuminated in-depth. Moreover, the ability of resistive switching devices to be integrated into state-of-the-art CMOS circuits under the additional consideration with a suitable selector device for memory array operation is assessed. From this analysis, and by factoring in the maturity of the different concepts, a ranking methodology for application of the nanoscale resistive switching memory devices in the memory landscape is derived. Finally, the suitability of the different device concepts for beyond pure memory applications, such as brain inspired and neuromorphic computational or logic in memory applications that strive to overcome the vanNeumann bottleneck, is discussed

    JPL preferred parts list: Reliable electronic components

    Get PDF
    The JPL Preferred Parts List was prepared to provide a basis for selection of electronic parts for JPL spacecraft programs. Supporting tests for the listed parts were designed to comply with specific spacecraft environmental requirements. The list tabulates the electronic, magnetic, and electromechanical parts applicable to all JPL electronic equipment wherein reliability is a major concern. The parts listed are revelant to equipment supplied by subcontractors as well as fabricated at the laboratory
    • …
    corecore