1 research outputs found

    An Efficient Class of Traub–Steffensen-Type Methods for Computing Multiple Zeros

    No full text
    Numerous higher-order methods with derivative evaluations are accessible in the literature for computing multiple zeros. However, higher-order methods without derivatives are very rare for multiple zeros. Encouraged by this fact, we present a family of third-order derivative-free iterative methods for multiple zeros that require only evaluations of three functions per iteration. Convergence of the proposed class is demonstrated by means of using a graphical tool, namely basins of attraction. Applicability of the methods is demonstrated through numerical experimentation on different functions that illustrates the efficient behavior. Comparison of numerical results shows that the presented iterative methods are good competitors to the existing techniques
    corecore