3,580 research outputs found

    An Efficient Dynamic Programming Algorithm for the Generalized LCS Problem with Multiple Substring Exclusion Constrains

    Full text link
    In this paper, we consider a generalized longest common subsequence problem with multiple substring exclusion constrains. For the two input sequences XX and YY of lengths nn and mm, and a set of dd constrains P={P1,...,Pd}P=\{P_1,...,P_d\} of total length rr, the problem is to find a common subsequence ZZ of XX and YY excluding each of constrain string in PP as a substring and the length of ZZ is maximized. The problem was declared to be NP-hard\cite{1}, but we finally found that this is not true. A new dynamic programming solution for this problem is presented in this paper. The correctness of the new algorithm is proved. The time complexity of our algorithm is O(nmr)O(nmr).Comment: arXiv admin note: substantial text overlap with arXiv:1301.718

    Sublinear Space Algorithms for the Longest Common Substring Problem

    Full text link
    Given mm documents of total length nn, we consider the problem of finding a longest string common to at least d2d \geq 2 of the documents. This problem is known as the \emph{longest common substring (LCS) problem} and has a classic O(n)O(n) space and O(n)O(n) time solution (Weiner [FOCS'73], Hui [CPM'92]). However, the use of linear space is impractical in many applications. In this paper we show that for any trade-off parameter 1τn1 \leq \tau \leq n, the LCS problem can be solved in O(τ)O(\tau) space and O(n2/τ)O(n^2/\tau) time, thus providing the first smooth deterministic time-space trade-off from constant to linear space. The result uses a new and very simple algorithm, which computes a τ\tau-additive approximation to the LCS in O(n2/τ)O(n^2/\tau) time and O(1)O(1) space. We also show a time-space trade-off lower bound for deterministic branching programs, which implies that any deterministic RAM algorithm solving the LCS problem on documents from a sufficiently large alphabet in O(τ)O(\tau) space must use Ω(nlog(n/(τlogn))/loglog(n/(τlogn))\Omega(n\sqrt{\log(n/(\tau\log n))/\log\log(n/(\tau\log n)}) time.Comment: Accepted to 22nd European Symposium on Algorithm

    Free Energy Approximations for CSMA networks

    Full text link
    In this paper we study how to estimate the back-off rates in an idealized CSMA network consisting of nn links to achieve a given throughput vector using free energy approximations. More specifically, we introduce the class of region-based free energy approximations with clique belief and present a closed form expression for the back-off rates based on the zero gradient points of the free energy approximation (in terms of the conflict graph, target throughput vector and counting numbers). Next we introduce the size kmaxk_{max} clique free energy approximation as a special case and derive an explicit expression for the counting numbers, as well as a recursion to compute the back-off rates. We subsequently show that the size kmaxk_{max} clique approximation coincides with a Kikuchi free energy approximation and prove that it is exact on chordal conflict graphs when kmax=nk_{max} = n. As a by-product these results provide us with an explicit expression of a fixed point of the inverse generalized belief propagation algorithm for CSMA networks. Using numerical experiments we compare the accuracy of the novel approximation method with existing methods
    corecore