3 research outputs found

    An Efficient Advantage Distillation Scheme for Bidirectional Secret-Key Agreement

    No full text
    The classical secret-key agreement (SKA) scheme includes three phases: (a) advantage distillation (AD), (b) reconciliation, and (c) privacy amplification. Define the transmission rate as the ratio between the number of raw key bits obtained by the AD phase and the number of transmitted bits in the AD. The unidirectional SKA, whose transmission rate is 0 . 5, can be realized by using the original two-way wiretap channel as the AD phase. In this paper, we establish an efficient bidirectional SKA whose transmission rate is nearly 1 by modifying the two-way wiretap channel and using the modified two-way wiretap channel as the AD phase. The bidirectional SKA can be extended to multiple rounds of SKA with the same performance and transmission rate. For multiple rounds of bidirectional SKA, we have provided the bit error rate performance of the main channel and eavesdropper’s channel and the secret-key capacity. It is shown that the bit error rate (BER) of the main channel was lower than the eavesdropper’s channel and we prove that the transmission rate was nearly 1 when the number of rounds was large. Moreover, the secret-key capacity C s was from 0 . 04 to 0 . 1 as the error probability of channel was from 0 . 01 to 0 . 15 in binary symmetric channel (BSC). The secret-key capacity was close to 0 . 3 as the signal-to-noise ratio increased in the additive white Gaussian noise (AWGN) channel

    An Efficient Advantage Distillation Scheme for Bidirectional Secret-Key Agreement

    No full text
    The classical secret-key agreement (SKA) scheme includes three phases: (a) advantage distillation (AD), (b) reconciliation, and (c) privacy amplification. Define the transmission rate as the ratio between the number of raw key bits obtained by the AD phase and the number of transmitted bits in the AD. The unidirectional SKA, whose transmission rate is 0 . 5, can be realized by using the original two-way wiretap channel as the AD phase. In this paper, we establish an efficient bidirectional SKA whose transmission rate is nearly 1 by modifying the two-way wiretap channel and using the modified two-way wiretap channel as the AD phase. The bidirectional SKA can be extended to multiple rounds of SKA with the same performance and transmission rate. For multiple rounds of bidirectional SKA, we have provided the bit error rate performance of the main channel and eavesdropper’s channel and the secret-key capacity. It is shown that the bit error rate (BER) of the main channel was lower than the eavesdropper’s channel and we prove that the transmission rate was nearly 1 when the number of rounds was large. Moreover, the secret-key capacity C s was from 0 . 04 to 0 . 1 as the error probability of channel was from 0 . 01 to 0 . 15 in binary symmetric channel (BSC). The secret-key capacity was close to 0 . 3 as the signal-to-noise ratio increased in the additive white Gaussian noise (AWGN) channel
    corecore