3 research outputs found

    An Implantable Photovoltaic Energy Harvesting System With Skin Optical Analysis

    Get PDF
    Medical implantable devices can use photovoltaic (PV) energy harvesting to extend battery life span and increase their performance. The power conditioning and management circuitry is essential not only to regulate the voltage requirements of the load but also optimize the output power of PV cells. However, the optical losses due to the skin and the device characteristics of the PV cells are rarely analyzed before chip fabrication. This inevitably leads to sub-optimal system performance in in-vitro or in-vivo tests owing to the varying PV output characteristics. To address this problem, we use the finite-element-method (FEM) to analyze the optical and physical performance of the PV cell under the skin, and then export the model into the p-spice simulator for circuit-level implementation. We further demonstrate a 1:2 cross-coupled DC-DC converter using pulse density modulation for load regulation control to meet the loading requirement. In this work, the PV cell can achieve an 18% of efficiency, and the power conditioning circuit can provide an 84% of end-to-end efficiency

    Development of electronics for microultrasound capsule endoscopy

    Get PDF
    Development of intracorporeal devices has surged in the last decade due to advancements in the semiconductor industry, energy storage and low-power sensing systems. This work aims to present a thorough systematic overview and exploration of the microultrasound (µUS) capsule endoscopy (CE) field as the development of electronic components will be key to a successful applicable µUSCE device. The research focused on investigating and designing high-voltage (HV, < 36 V) generating and driving circuits as well as a low-noise amplifier (LNA) for battery-powered and volume-limited systems. In implantable applications, HV generation with maximum efficiency is required to improve the operational lifetime whilst reducing the cost of the device. A fully integrated hybrid (H) charge pump (CP) comprising a serial-parallel (SP) stage was designed and manufactured for > 20 V and 0 - 100 µA output capabilities. The results were compared to a Dickson (DKCP) occupying the same chip area; further improvements in the SPCP topology were explored and a new switching scheme for SPCPs was introduced. A second regulated CP version was excogitated and manufactured to use with an integrated µUS pulse generator. The CP was manufactured and tested at different output currents and capacitive loads; its operation with an US pulser was evaluated and a novel self-oscillating CP mechanism to eliminate the need of an auxiliary clock generator with a minimum area overhead was devised. A single-output universal US pulser was designed, manufactured and tested with 1.5 MHz, 3 MHz, and 28 MHz arrays to achieve a means of fully-integrated, low-power transducer driving. The circuit was evaluated for power consumption and pulse generation capabilities with different loads. Pulse-echo measurements were carried out and compared with those from a commercial US research system to characterise and understand the quality of the generated pulse. A second pulser version for a 28 MHz array was derived to allow control of individual elements. The work involved its optimisation methodology and design of a novel HV feedback-based level-shifter. A low-noise amplifier (LNA) was designed for a wide bandwidth µUS array with a centre frequency of 28 MHz. The LNA was based on an energy-efficient inverter architecture. The circuit encompassed a full power-down functionality and was investigated for a self-biased operation to achieve lower chip area. The explored concepts enable realisation of low power and high performance LNAs for µUS frequencies
    corecore