44,204 research outputs found

    Characterizing driving behavior using automatic visual analysis

    Full text link
    In this work, we present the problem of rash driving detection algorithm using a single wide angle camera sensor, particularly useful in the Indian context. To our knowledge this rash driving problem has not been addressed using Image processing techniques (existing works use other sensors such as accelerometer). Car Image processing literature, though rich and mature, does not address the rash driving problem. In this work-in-progress paper, we present the need to address this problem, our approach and our future plans to build a rash driving detector.Comment: 4 pages,7 figures, IBM-ICARE201

    Real-time automated road, lane and car detection for autonomous driving

    Get PDF
    In this paper, we discuss a vision based system for autonomous guidance of vehicles. An autonomous intelligent vehicle has to perform a number of functionalities. Segmentation of the road, determining the boundaries to drive in and recognizing the vehicles and obstacles around are the main tasks for vision guided vehicle navigation. In this article we propose a set of algorithms which lead to the solution of road and vehicle segmentation using data from a color camera. The algorithms described here combine gray value difference and texture analysis techniques to segment the road from the image, several geometric transformations and contour processing algorithms are used to segment lanes, and moving cars are extracted with the help of background modeling and estimation. The techniques developed have been tested in real road images and the results are presented

    Attributed Network Embedding for Learning in a Dynamic Environment

    Full text link
    Network embedding leverages the node proximity manifested to learn a low-dimensional node vector representation for each node in the network. The learned embeddings could advance various learning tasks such as node classification, network clustering, and link prediction. Most, if not all, of the existing works, are overwhelmingly performed in the context of plain and static networks. Nonetheless, in reality, network structure often evolves over time with addition/deletion of links and nodes. Also, a vast majority of real-world networks are associated with a rich set of node attributes, and their attribute values are also naturally changing, with the emerging of new content patterns and the fading of old content patterns. These changing characteristics motivate us to seek an effective embedding representation to capture network and attribute evolving patterns, which is of fundamental importance for learning in a dynamic environment. To our best knowledge, we are the first to tackle this problem with the following two challenges: (1) the inherently correlated network and node attributes could be noisy and incomplete, it necessitates a robust consensus representation to capture their individual properties and correlations; (2) the embedding learning needs to be performed in an online fashion to adapt to the changes accordingly. In this paper, we tackle this problem by proposing a novel dynamic attributed network embedding framework - DANE. In particular, DANE first provides an offline method for a consensus embedding and then leverages matrix perturbation theory to maintain the freshness of the end embedding results in an online manner. We perform extensive experiments on both synthetic and real attributed networks to corroborate the effectiveness and efficiency of the proposed framework.Comment: 10 page

    Facilitating the driver detection of road surface type by selective manipulation of the steering-wheel acceleration signal

    Get PDF
    Copyright @ 2012 by Institution of Mechanical Engineers.Previous research has investigated the possibility of facilitating the driver detection of road surface type by means of selective manipulation of the steering-wheel acceleration signal. In previous studies a selective increase in acceleration amplitude has been found to facilitate road-surface-type detection, as has selective manipulation of the individual transient events which are present in the signal. The previous research results have been collected into a first guideline for the optimization of the steering-wheel acceleration signal, and the guideline has been tested in the current study. The test stimuli used in the current study were ten steering-wheel acceleration-time histories which were selected from an extensive database of road test measurements performed by the research group. The time histories, which were all from midsized European automobiles and European roads, were selected such that the widest possible operating envelope could be achieved in terms of the r.m.s. value of the steering acceleration, the kurtosis, the power spectral density function, and the number of transient events present in the signal. The time histories were manipulated by means of the mildly non-stationary mission synthesis algorithm in order to increase, by a factor of 2, both the number and the size of the transient events contained within the frequency interval from 20 Hz to 60Hz. The ensemble, composed of both the unmanipulated and the manipulated time histories, was used to perform a laboratory-based detection task with 15 participants, who were presented the individual stimuli in random order. The participants were asked to state, by answering 'yes' or 'no', whether each stimulus was considered to be from the road surface that was displayed in front of them by means of a large photograph on a board. The results suggest that the selectively manipulated steering-wheel acceleration stimuli produced improved detection for eight of the ten road surface types which were tested, with a maximum improvement of 14 per cent in the case of the broken road surface. The selective manipulation did lead, however, to some degradation in detection for the motorway road stimulus and for the noise road stimulus, thus suggesting that the current guideline is not universally optimal for all road surfaces

    Traffic monitoring using image processing : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Information and Telecommunications Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    Traffic monitoring involves the collection of data describing the characteristics of vehicles and their movements. Such data may be used for automatic tolls, congestion and incident detection, law enforcement, and road capacity planning etc. With the recent advances in Computer Vision technology, videos can be analysed automatically and relevant information can be extracted for particular applications. Automatic surveillance using video cameras with image processing technique is becoming a powerful and useful technology for traffic monitoring. In this research project, a video image processing system that has the potential to be developed for real-time application is developed for traffic monitoring including vehicle tracking, counting, and classification. A heuristic approach is applied in developing this system. The system is divided into several parts, and several different functional components have been built and tested using some traffic video sequences. Evaluations are carried out to show that this system is robust and can be developed towards real-time applications

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction
    • …
    corecore