1,107 research outputs found

    MetaPred: Meta-Learning for Clinical Risk Prediction with Limited Patient Electronic Health Records

    Full text link
    In recent years, increasingly augmentation of health data, such as patient Electronic Health Records (EHR), are becoming readily available. This provides an unprecedented opportunity for knowledge discovery and data mining algorithms to dig insights from them, which can, later on, be helpful to the improvement of the quality of care delivery. Predictive modeling of clinical risk, including in-hospital mortality, hospital readmission, chronic disease onset, condition exacerbation, etc., from patient EHR, is one of the health data analytic problems that attract most of the interests. The reason is not only because the problem is important in clinical settings, but also there are challenges working with EHR such as sparsity, irregularity, temporality, etc. Different from applications in other domains such as computer vision and natural language processing, the labeled data samples in medicine (patients) are relatively limited, which creates lots of troubles for effective predictive model learning, especially for complicated models such as deep learning. In this paper, we propose MetaPred, a meta-learning for clinical risk prediction from longitudinal patient EHRs. In particular, in order to predict the target risk where there are limited data samples, we train a meta-learner from a set of related risk prediction tasks which learns how a good predictor is learned. The meta-learned can then be directly used in target risk prediction, and the limited available samples can be used for further fine-tuning the model performance. The effectiveness of MetaPred is tested on a real patient EHR repository from Oregon Health & Science University. We are able to demonstrate that with CNN and RNN as base predictors, MetaPred can achieve much better performance for predicting target risk with low resources comparing with the predictor trained on the limited samples available for this risk

    Representation Learning with Autoencoders for Electronic Health Records: A Comparative Study

    Full text link
    Increasing volume of Electronic Health Records (EHR) in recent years provides great opportunities for data scientists to collaborate on different aspects of healthcare research by applying advanced analytics to these EHR clinical data. A key requirement however is obtaining meaningful insights from high dimensional, sparse and complex clinical data. Data science approaches typically address this challenge by performing feature learning in order to build more reliable and informative feature representations from clinical data followed by supervised learning. In this paper, we propose a predictive modeling approach based on deep learning based feature representations and word embedding techniques. Our method uses different deep architectures (stacked sparse autoencoders, deep belief network, adversarial autoencoders and variational autoencoders) for feature representation in higher-level abstraction to obtain effective and robust features from EHRs, and then build prediction models on top of them. Our approach is particularly useful when the unlabeled data is abundant whereas labeled data is scarce. We investigate the performance of representation learning through a supervised learning approach. Our focus is to present a comparative study to evaluate the performance of different deep architectures through supervised learning and provide insights in the choice of deep feature representation techniques. Our experiments demonstrate that for small data sets, stacked sparse autoencoder demonstrates a superior generality performance in prediction due to sparsity regularization whereas variational autoencoders outperform the competing approaches for large data sets due to its capability of learning the representation distribution

    Boosting Deep Learning Risk Prediction with Generative Adversarial Networks for Electronic Health Records

    Full text link
    The rapid growth of Electronic Health Records (EHRs), as well as the accompanied opportunities in Data-Driven Healthcare (DDH), has been attracting widespread interests and attentions. Recent progress in the design and applications of deep learning methods has shown promising results and is forcing massive changes in healthcare academia and industry, but most of these methods rely on massive labeled data. In this work, we propose a general deep learning framework which is able to boost risk prediction performance with limited EHR data. Our model takes a modified generative adversarial network namely ehrGAN, which can provide plausible labeled EHR data by mimicking real patient records, to augment the training dataset in a semi-supervised learning manner. We use this generative model together with a convolutional neural network (CNN) based prediction model to improve the onset prediction performance. Experiments on two real healthcare datasets demonstrate that our proposed framework produces realistic data samples and achieves significant improvements on classification tasks with the generated data over several stat-of-the-art baselines.Comment: To appear in ICDM 2017. This is the full version of paper with 8 page

    Patient Flow Prediction via Discriminative Learning of Mutually-Correcting Processes

    Full text link
    Over the past decade the rate of care unit (CU) use in the United States has been increasing. With an aging population and ever-growing demand for medical care, effective management of patients' transitions among different care facilities will prove indispensible for shortening the length of hospital stays, improving patient outcomes, allocating critical care resources, and reducing preventable re-admissions. In this paper, we focus on an important problem of predicting the so-called "patient flow" from longitudinal electronic health records (EHRs), which has not been explored via existing machine learning techniques. By treating a sequence of transition events as a point process, we develop a novel framework for modeling patient flow through various CUs and jointly predicting patients' destination CUs and duration days. Instead of learning a generative point process model via maximum likelihood estimation, we propose a novel discriminative learning algorithm aiming at improving the prediction of transition events in the case of sparse data. By parameterizing the proposed model as a mutually-correcting process, we formulate the estimation problem via generalized linear models, which lends itself to efficient learning based on alternating direction method of multipliers (ADMM). Furthermore, we achieve simultaneous feature selection and learning by adding a group-lasso regularizer to the ADMM algorithm. Additionally, for suppressing the negative influence of data imbalance on the learning of model, we synthesize auxiliary training data for the classes with extremely few samples, and improve the robustness of our learning method accordingly. Testing on real-world data, we show that our method obtains superior performance in terms of accuracy of predicting the destination CU transition and duration of each CU occupancy.Comment: in IEEE Transactions on Knowledge and Data Engineering (TKDE), 201

    Co-Morbidity Exploration on Wearables Activity Data Using Unsupervised Pre-training and Multi-Task Learning

    Full text link
    Physical activity and sleep play a major role in the prevention and management of many chronic conditions. It is not a trivial task to understand their impact on chronic conditions. Currently, data from electronic health records (EHRs), sleep lab studies, and activity/sleep logs are used. The rapid increase in the popularity of wearable health devices provides a significant new data source, making it possible to track the user's lifestyle real-time through web interfaces, both to consumer as well as their healthcare provider, potentially. However, at present there is a gap between lifestyle data (e.g., sleep, physical activity) and clinical outcomes normally captured in EHRs. This is a critical barrier for the use of this new source of signal for healthcare decision making. Applying deep learning to wearables data provides a new opportunity to overcome this barrier. To address the problem of the unavailability of clinical data from a major fraction of subjects and unrepresentative subject populations, we propose a novel unsupervised (task-agnostic) time-series representation learning technique called act2vec. act2vec learns useful features by taking into account the co-occurrence of activity levels along with periodicity of human activity patterns. The learned representations are then exploited to boost the performance of disorder-specific supervised learning models. Furthermore, since many disorders are often related to each other, a phenomenon referred to as co-morbidity, we use a multi-task learning framework for exploiting the shared structure of disorder inducing life-style choices partially captured in the wearables data. Empirical evaluation using actigraphy data from 4,124 subjects shows that our proposed method performs and generalizes substantially better than the conventional time-series symbolic representational methods and task-specific deep learning models

    Integrative Analysis of Patient Health Records and Neuroimages via Memory-based Graph Convolutional Network

    Full text link
    With the arrival of the big data era, more and more data are becoming readily available in various real-world applications and those data are usually highly heterogeneous. Taking computational medicine as an example, we have both Electronic Health Records (EHR) and medical images for each patient. For complicated diseases such as Parkinson's and Alzheimer's, both EHR and neuroimaging information are very important for disease understanding because they contain complementary aspects of the disease. However, EHR and neuroimage are completely different. So far the existing research has been mainly focusing on one of them. In this paper, we proposed a framework, Memory-Based Graph Convolution Network (MemGCN), to perform integrative analysis with such multi-modal data. Specifically, GCN is used to extract useful information from the patients' neuroimages. The information contained in the patient EHRs before the acquisition of each brain image is captured by a memory network because of its sequential nature. The information contained in each brain image is combined with the information read out from the memory network to infer the disease state at the image acquisition timestamp. To further enhance the analytical power of MemGCN, we also designed a multi-hop strategy that allows multiple reading and updating on the memory can be performed at each iteration. We conduct experiments using the patient data from the Parkinson's Progression Markers Initiative (PPMI) with the task of classification of Parkinson's Disease (PD) cases versus controls. We demonstrate that superior classification performance can be achieved with our proposed framework, comparing with existing approaches involving a single type of data

    Time-Guided High-Order Attention Model of Longitudinal Heterogeneous Healthcare Data

    Full text link
    Due to potential applications in chronic disease management and personalized healthcare, the EHRs data analysis has attracted much attention of both researchers and practitioners. There are three main challenges in modeling longitudinal and heterogeneous EHRs data: heterogeneity, irregular temporality and interpretability. A series of deep learning methods have made remarkable progress in resolving these challenges. Nevertheless, most of existing attention models rely on capturing the 1-order temporal dependencies or 2-order multimodal relationships among feature elements. In this paper, we propose a time-guided high-order attention (TGHOA) model. The proposed method has three major advantages. (1) It can model longitudinal heterogeneous EHRs data via capturing the 3-order correlations of different modalities and the irregular temporal impact of historical events. (2) It can be used to identify the potential concerns of medical features to explain the reasoning process of the healthcare model. (3) It can be easily expanded into cases with more modalities and flexibly applied in different prediction tasks. We evaluate the proposed method in two tasks of mortality prediction and disease ranking on two real world EHRs datasets. Extensive experimental results show the effectiveness of the proposed model.Comment: PRICAI-201

    Deep Representation Learning of Patient Data from Electronic Health Records (EHR): A Systematic Review

    Full text link
    Patient representation learning refers to learning a dense mathematical representation of a patient that encodes meaningful information from Electronic Health Records (EHRs). This is generally performed using advanced deep learning methods. This study presents a systematic review of this field and provides both qualitative and quantitative analyses from a methodological perspective. We identified studies developing patient representations from EHRs with deep learning methods from MEDLINE, EMBASE, Scopus, the Association for Computing Machinery (ACM) Digital Library, and Institute of Electrical and Electronics Engineers (IEEE) Xplore Digital Library. After screening 363 articles, 49 papers were included for a comprehensive data collection. We noticed a typical workflow starting with feeding raw data, applying deep learning models, and ending with clinical outcome predictions as evaluations of the learned representations. Specifically, learning representations from structured EHR data was dominant (37 out of 49 studies). Recurrent Neural Networks were widely applied as the deep learning architecture (LSTM: 13 studies, GRU: 11 studies). Disease prediction was the most common application and evaluation (31 studies). Benchmark datasets were mostly unavailable (28 studies) due to privacy concerns of EHR data, and code availability was assured in 20 studies. We show the importance and feasibility of learning comprehensive representations of patient EHR data through a systematic review. Advances in patient representation learning techniques will be essential for powering patient-level EHR analyses. Future work will still be devoted to leveraging the richness and potential of available EHR data. Knowledge distillation and advanced learning techniques will be exploited to assist the capability of learning patient representation further

    Generating Multi-label Discrete Patient Records using Generative Adversarial Networks

    Full text link
    Access to electronic health record (EHR) data has motivated computational advances in medical research. However, various concerns, particularly over privacy, can limit access to and collaborative use of EHR data. Sharing synthetic EHR data could mitigate risk. In this paper, we propose a new approach, medical Generative Adversarial Network (medGAN), to generate realistic synthetic patient records. Based on input real patient records, medGAN can generate high-dimensional discrete variables (e.g., binary and count features) via a combination of an autoencoder and generative adversarial networks. We also propose minibatch averaging to efficiently avoid mode collapse, and increase the learning efficiency with batch normalization and shortcut connections. To demonstrate feasibility, we showed that medGAN generates synthetic patient records that achieve comparable performance to real data on many experiments including distribution statistics, predictive modeling tasks and a medical expert review. We also empirically observe a limited privacy risk in both identity and attribute disclosure using medGAN.Comment: Accepted at Machine Learning in Health Care (MLHC) 201

    Neural Natural Language Processing for Unstructured Data in Electronic Health Records: a Review

    Full text link
    Electronic health records (EHRs), digital collections of patient healthcare events and observations, are ubiquitous in medicine and critical to healthcare delivery, operations, and research. Despite this central role, EHRs are notoriously difficult to process automatically. Well over half of the information stored within EHRs is in the form of unstructured text (e.g. provider notes, operation reports) and remains largely untapped for secondary use. Recently, however, newer neural network and deep learning approaches to Natural Language Processing (NLP) have made considerable advances, outperforming traditional statistical and rule-based systems on a variety of tasks. In this survey paper, we summarize current neural NLP methods for EHR applications. We focus on a broad scope of tasks, namely, classification and prediction, word embeddings, extraction, generation, and other topics such as question answering, phenotyping, knowledge graphs, medical dialogue, multilinguality, interpretability, etc.Comment: 33 pages, 11 figure
    corecore