5,438 research outputs found

    Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground

    Full text link
    We provide a comprehensive evaluation of salient object detection (SOD) models. Our analysis identifies a serious design bias of existing SOD datasets which assumes that each image contains at least one clearly outstanding salient object in low clutter. The design bias has led to a saturated high performance for state-of-the-art SOD models when evaluated on existing datasets. The models, however, still perform far from being satisfactory when applied to real-world daily scenes. Based on our analyses, we first identify 7 crucial aspects that a comprehensive and balanced dataset should fulfill. Then, we propose a new high quality dataset and update the previous saliency benchmark. Specifically, our SOC (Salient Objects in Clutter) dataset, includes images with salient and non-salient objects from daily object categories. Beyond object category annotations, each salient image is accompanied by attributes that reflect common challenges in real-world scenes. Finally, we report attribute-based performance assessment on our dataset.Comment: ECCV 201

    DISC: Deep Image Saliency Computing via Progressive Representation Learning

    Full text link
    Salient object detection increasingly receives attention as an important component or step in several pattern recognition and image processing tasks. Although a variety of powerful saliency models have been intensively proposed, they usually involve heavy feature (or model) engineering based on priors (or assumptions) about the properties of objects and backgrounds. Inspired by the effectiveness of recently developed feature learning, we provide a novel Deep Image Saliency Computing (DISC) framework for fine-grained image saliency computing. In particular, we model the image saliency from both the coarse- and fine-level observations, and utilize the deep convolutional neural network (CNN) to learn the saliency representation in a progressive manner. Specifically, our saliency model is built upon two stacked CNNs. The first CNN generates a coarse-level saliency map by taking the overall image as the input, roughly identifying saliency regions in the global context. Furthermore, we integrate superpixel-based local context information in the first CNN to refine the coarse-level saliency map. Guided by the coarse saliency map, the second CNN focuses on the local context to produce fine-grained and accurate saliency map while preserving object details. For a testing image, the two CNNs collaboratively conduct the saliency computing in one shot. Our DISC framework is capable of uniformly highlighting the objects-of-interest from complex background while preserving well object details. Extensive experiments on several standard benchmarks suggest that DISC outperforms other state-of-the-art methods and it also generalizes well across datasets without additional training. The executable version of DISC is available online: http://vision.sysu.edu.cn/projects/DISC.Comment: This manuscript is the accepted version for IEEE Transactions on Neural Networks and Learning Systems (T-NNLS), 201

    Enhanced Characterness for Text Detection in the Wild

    Full text link
    Text spotting is an interesting research problem as text may appear at any random place and may occur in various forms. Moreover, ability to detect text opens the horizons for improving many advanced computer vision problems. In this paper, we propose a novel language agnostic text detection method utilizing edge enhanced Maximally Stable Extremal Regions in natural scenes by defining strong characterness measures. We show that a simple combination of characterness cues help in rejecting the non text regions. These regions are further fine-tuned for rejecting the non-textual neighbor regions. Comprehensive evaluation of the proposed scheme shows that it provides comparative to better generalization performance to the traditional methods for this task

    Attentive Single-Tasking of Multiple Tasks

    Full text link
    In this work we address task interference in universal networks by considering that a network is trained on multiple tasks, but performs one task at a time, an approach we refer to as "single-tasking multiple tasks". The network thus modifies its behaviour through task-dependent feature adaptation, or task attention. This gives the network the ability to accentuate the features that are adapted to a task, while shunning irrelevant ones. We further reduce task interference by forcing the task gradients to be statistically indistinguishable through adversarial training, ensuring that the common backbone architecture serving all tasks is not dominated by any of the task-specific gradients. Results in three multi-task dense labelling problems consistently show: (i) a large reduction in the number of parameters while preserving, or even improving performance and (ii) a smooth trade-off between computation and multi-task accuracy. We provide our system's code and pre-trained models at http://vision.ee.ethz.ch/~kmaninis/astmt/.Comment: CVPR 2019 Camera Read
    • …
    corecore