52,895 research outputs found

    Practical implementation and error bounds of integer-type general algorithm for higher order differential equations

    Full text link
    In our preceding paper, we have proposed an algorithm for obtaining finite-norm solutions of higher-order linear ordinary differential equations of the Fuchsian type [\sum_m p_m (x) (d/dx)^m] f(x) = 0 (where p_m is a polynomial with rational-number-valued coefficients), by using only the four arithmetical operations on integers, and we proved its validity. For any nonnegative integer k, it is guaranteed mathematically that this method can produce all the solutions satisfying \int |f(x)|^2 (x^2+1)^k dx < \infty, under some conditions. We materialize this algorithm in practical procedures. An interger-type quasi-orthogonalization used there can suppress the explosion of calculations. Moreover, we give an upper limit of the errors. We also give some results of numerical experiments and compare them with the corresponding exact analytical solutions, which show that the proposed algorithm is successful in yielding solutions with high accuracy (using only arithmetical operations on integers).Comment: Comparison with existing method is adde

    Numerical techniques for lattice QCD in the ϵ\epsilon--regime

    Full text link
    In lattice QCD it is possible, in principle, to determine the parameters in the effective chiral lagrangian (including weak interaction couplings) by performing numerical simulations in the ϵ\epsilon--regime, i.e. at quark masses where the physical extent of the lattice is much smaller than the Compton wave length of the pion. The use of a formulation of the lattice theory that preserves chiral symmetry is attractive in this context, but the numerical implementation of any such approach requires special care in this kinematical situation due to the presence of some very low eigenvalues of the Dirac operator. We discuss a set of techniques (low-mode preconditioning and adapted-precision algorithms in particular) that make such computations numerically safe and more efficient by a large factor.Comment: Plain TeX source, 32 pages, figures include
    corecore