51 research outputs found

    Top-K Queries on Uncertain Data: On Score Distribution and Typical Answers

    Get PDF
    Uncertain data arises in a number of domains, including data integration and sensor networks. Top-k queries that rank results according to some user-defined score are an important tool for exploring large uncertain data sets. As several recent papers have observed, the semantics of top-k queries on uncertain data can be ambiguous due to tradeoffs between reporting high-scoring tuples and tuples with a high probability of being in the resulting data set. In this paper, we demonstrate the need to present the score distribution of top-k vectors to allow the user to choose between results along this score-probability dimensions. One option would be to display the complete distribution of all potential top-k tuple vectors, but this set is too large to compute. Instead, we propose to provide a number of typical vectors that effectively sample this distribution. We propose efficient algorithms to compute these vectors. We also extend the semantics and algorithms to the scenario of score ties, which is not dealt with in the previous work in the area. Our work includes a systematic empirical study on both real dataset and synthetic datasets.National Natural Science Foundation (Grant number IIS-0086057)National Natural Science Foundation (Grant number IIS- 0325838)National Natural Science Foundation (Grant number IIS-0448124

    Ranked Retrieval in Uncertain and Probabilistic Databases

    Get PDF
    Ranking queries are widely used in data exploration, data analysis and decision making scenarios. While most of the currently proposed ranking techniques focus on deterministic data, several emerging applications involve data that are imprecise or uncertain. Ranking uncertain data raises new challenges in query semantics and processing, making conventional methods inapplicable. Furthermore, the interplay between ranking and uncertainty models introduces new dimensions for ordering query results that do not exist in the traditional settings. This dissertation introduces new formulations and processing techniques for ranking queries on uncertain data. The formulations are based on marriage of traditional ranking semantics with possible worlds semantics under widely-adopted uncertainty models. In particular, we focus on studying the impact of tuple-level and attribute-level uncertainty on the semantics and processing techniques of ranking queries. Under the tuple-level uncertainty model, we introduce a processing framework leveraging the capabilities of relational database systems to recognize and handle data uncertainty in score-based ranking. The framework encapsulates a state space model, and efficient search algorithms that compute query answers by lazily materializing the necessary parts of the space. Under the attribute-level uncertainty model, we give a new probabilistic ranking model, based on partial orders, to encapsulate the space of possible rankings originating from uncertainty in attribute values. We present a set of efficient query evaluation algorithms, including sampling-based techniques based on the theory of Markov chains and Monte-Carlo method, to compute query answers. We build on our techniques for ranking under attribute-level uncertainty to support rank join queries on uncertain data. We show how to extend current rank join methods to handle uncertainty in scoring attributes. We provide a pipelined query operator implementation of uncertainty-aware rank join algorithm integrated with sampling techniques to compute query answers

    Ad-hoc Holistic Ranking Aggregation

    Get PDF
    Data exploration is considered one of the major processes that enables the user to analyze massive amount of data in order to find the most important and relevant informa- tion needed. Aggregation and Ranking are two of the most frequently used tools in data exploration. The interaction between ranking and aggregation has been studied widely from different perspectives. In this thesis, a comprehensive survey about this interaction is studied. Holistic Ranking Aggregation which is a new interaction is introduced. Finally, various algorithms are proposed to efficiently process ad-hoc holistic ranking aggregation for both monotone and generic scoring functions

    Query-Time Data Integration

    Get PDF
    Today, data is collected in ever increasing scale and variety, opening up enormous potential for new insights and data-centric products. However, in many cases the volume and heterogeneity of new data sources precludes up-front integration using traditional ETL processes and data warehouses. In some cases, it is even unclear if and in what context the collected data will be utilized. Therefore, there is a need for agile methods that defer the effort of integration until the usage context is established. This thesis introduces Query-Time Data Integration as an alternative concept to traditional up-front integration. It aims at enabling users to issue ad-hoc queries on their own data as if all potential other data sources were already integrated, without declaring specific sources and mappings to use. Automated data search and integration methods are then coupled directly with query processing on the available data. The ambiguity and uncertainty introduced through fully automated retrieval and mapping methods is compensated by answering those queries with ranked lists of alternative results. Each result is then based on different data sources or query interpretations, allowing users to pick the result most suitable to their information need. To this end, this thesis makes three main contributions. Firstly, we introduce a novel method for Top-k Entity Augmentation, which is able to construct a top-k list of consistent integration results from a large corpus of heterogeneous data sources. It improves on the state-of-the-art by producing a set of individually consistent, but mutually diverse, set of alternative solutions, while minimizing the number of data sources used. Secondly, based on this novel augmentation method, we introduce the DrillBeyond system, which is able to process Open World SQL queries, i.e., queries referencing arbitrary attributes not defined in the queried database. The original database is then augmented at query time with Web data sources providing those attributes. Its hybrid augmentation/relational query processing enables the use of ad-hoc data search and integration in data analysis queries, and improves both performance and quality when compared to using separate systems for the two tasks. Finally, we studied the management of large-scale dataset corpora such as data lakes or Open Data platforms, which are used as data sources for our augmentation methods. We introduce Publish-time Data Integration as a new technique for data curation systems managing such corpora, which aims at improving the individual reusability of datasets without requiring up-front global integration. This is achieved by automatically generating metadata and format recommendations, allowing publishers to enhance their datasets with minimal effort. Collectively, these three contributions are the foundation of a Query-time Data Integration architecture, that enables ad-hoc data search and integration queries over large heterogeneous dataset collections

    Algorithms for continuous queries: A geometric approach

    Get PDF
    <p>There has been an unprecedented growth in both the amount of data and the number of users interested in different types of data. Users often want to keep track of the data that match their interests over a period of time. A continuous query, once issued by a user, maintains the matching results for the user as new data (as well as updates to the existing data) continue to arrive in a stream. However, supporting potentially millions of continuous queries is a huge challenge. This dissertation addresses the problem of scalably processing a large number of continuous queries over a wide-area network. </p><p>Conceptually, the task of supporting distributed continuous queries can be divided into two components--event processing (computing the set of affected users for each data update) and notification dissemination (notifying the set of affected users). The first part of this dissertation focuses on event processing. Since interacting with large-scale data can easily frustrate and overwhelm the users, top-k queries have attracted considerable interest from the database community as they allow users to focus on the top-ranked results only. However, it is nearly impossible to find a set of common top-ranked data that everyone is interested in, therefore, users are allowed to specify their interest in different forms of preferences, such as personalized ranking function and range selection. This dissertation presents geometric frameworks, data structures, and algorithms for answering several types of preference queries efficiently. Experimental evaluations show that our approaches outperform the previous ones by orders of magnitude.</p><p>The second part of the dissertation presents comprehensive solutions to the problem of processing and notifying a large number of continuous range top-k queries across a wide-area network. Simple solutions include using a content-driven network to notify all continuous queries whose ranges contain the update (ignoring top-k), or using a server to compute only the affected continuous queries and notifying them individually. The former solution generates too much network traffic, while the latter overwhelms the server. This dissertation presents a geometric framework which allows the set of affected continuous queries to be described succinctly with messages that can be efficiently disseminated using content-driven networks. Fast algorithms are also developed to reformulate each update into a set of messages whose number is provably optimal, with or without knowing all continuous queries. </p><p>The final component of this dissertation is the design of a wide-area dissemination network for continuous range queries. In particular, this dissertation addresses the problem of assigning users to servers in a wide-area content-based publish/subscribe system. A good assignment should consider both users' interests and locations, and balance multiple performance criteria including bandwidth, delay, and load balance. This dissertation presents a Monte Carlo approximation algorithm as well as a simple greedy algorithm. The Monte Carlo algorithm jointly considers multiple performance criteria to find a broker-subscriber assignment and provides theoretical performance guarantees. Using this algorithm as a yardstick, the greedy algorithm is also concluded to work well across a wide range of workloads.</p>Dissertatio
    • …
    corecore