1,187 research outputs found

    Optimizing U-Net Architecture with Feed-Forward Neural Networks for Precise Cobb Angle Prediction in Scoliosis Diagnosis

    Get PDF
    In the burgeoning field of Artificial Intelligence (AI) and its notable subsets, such as Deep Learning (DL), there is evidence of its transformative impact in assisting clinicians, particularly in diagnosing scoliosis. AI is unrivaled for its speed and precision in analyzing medical images, including X-rays and computed tomography (CT) scans. However, the path does not lack obstacles. Biases, unanticipated outcomes, and false positive and negative predictions present significant challenges. Our research employed three complex experimental sets, each focusing on adapting the U-Net architecture. Through a nuanced combination of feed-forward neural network (FFNN) configurations and hyperparameters, we endeavored to determine the most effective nonlinear regression model configuration for predicting the Cobb angle. This was done with the dual purpose of reducing AI training time without sacrificing predictive accuracy. Utilizing the capabilities of the PyTorch framework, we meticulously crafted and refined the deep learning models for each of the three experiments, focusing on an FFFN dropout rate of p=0.45. The Root Mean Square Error (RMSE), the number of epochs, and the number of nodes spanning three hidden layers in each FFFN were utilized as crucial performance metrics while a base learning rate of 0.001 was maintained. Notably, during the optimization phase, one of the experiments incorporated a learning rate scheduler to protect against potential pitfalls such as local minima and saddle points. A judiciously incorporated Early Stopping technique, triggered between the patience range of 5-10 epochs, ensured model stability as the Mean Squared Error (MSE) plateau loss approached approximately 1. Consequently, the model converged between 50 and 82 epochs. We hypothesize that our proposed architecture holds promise for future refinements, conditioned on assiduous experimentation with an array of medical deep learning paradigms

    Automatic bony structure segmentation and curvature estimation on ultrasound cervical spine images -- a feasibility study

    Full text link
    The loss of cervical lordosis is a common degenerative disorder known to be associated with abnormal spinal alignment. In recent years, ultrasound (US) imaging has been widely applied in the assessment of spine deformity and has shown promising results. The objectives of this study are to automatically segment bony structures from the 3D US cervical spine image volume and to assess the cervical lordosis on the key sagittal frames. In this study, a portable ultrasound imaging system was applied to acquire cervical spine image volume. The nnU-Net was trained on to segment bony structures on the transverse images and validated by 5-fold-cross-validation. The volume data were reconstructed from the segmented image series. An energy function indicating intensity levels and integrity of bony structures was designed to extract the proxy key sagittal frames on both left and right sides for the cervical curve measurement. The mean absolute difference (MAD), standard deviation (SD) and correlation between the spine curvatures of the left and right sides were calculated for quantitative evaluation of the proposed method. The DSC value of the nnU-Net model in segmenting ROI was 0.973. For the measurement of 22 lamina curve angles, the MAD, SD and correlation between the left and right sides of the cervical spine were 3.591, 3.432 degrees and 0.926, respectively. The results indicate that our method has a high accuracy and reliability in the automatic segmentation of the cervical spine and shows the potential of diagnosing the loss of cervical lordosis using the 3D ultrasound imaging technique

    A fresh look at spinal alignment and deformities: Automated analysis of a large database of 9832 biplanar radiographs

    Get PDF
    We developed and used a deep learning tool to process biplanar radiographs of 9,832 non-surgical patients suffering from spinal deformities, with the aim of reporting the statistical distribution of radiological parameters describing the spinal shape and the correlations and interdependencies between them. An existing tool able to automatically perform a three-dimensional reconstruction of the thoracolumbar spine has been improved and used to analyze a large set of biplanar radiographs of the trunk. For all patients, the following parameters were calculated: spinopelvic parameters; lumbar lordosis; mismatch between pelvic incidence and lumbar lordosis; thoracic kyphosis; maximal coronal Cobb angle; sagittal vertical axis; T1-pelvic angle; maximal vertebral rotation in the transverse plane. The radiological parameters describing the sagittal alignment were found to be highly interrelated with each other, as well as dependent on age, while sex had relatively minor but statistically significant importance. Lumbar lordosis was associated with thoracic kyphosis, pelvic incidence and sagittal vertical axis. The pelvic incidence-lumbar lordosis mismatch was found to be dependent on the pelvic incidence and on age. Scoliosis had a distinct association with the sagittal alignment in adolescent and adult subjects. The deep learning-based tool allowed for the analysis of a large imaging database which would not be reasonably feasible if performed by human operators. The large set of results will be valuable to trigger new research questions in the field of spinal deformities, as well as to challenge the current knowledge

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519
    corecore