281 research outputs found

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving

    Particle swarm optimization for multimodal functions: a clustering approach

    Get PDF
    The particle swarm optimization (PSO) algorithm is designed to find a single optimal solution and needs some modifications to be able to locate multiple optima on a multimodal function. In parallel with evolutionary computation algorithms, these modifications can be grouped in the framework of niching. In this work, we present a new approach to niching in PSO based on clustering particles to identify niches. The neighborhood structure, on which particles rely for communication, is exploited together with the niche information to locate multiple optima in parallel. Our approach was implemented in thek-means-based PSO (kPSO), which employs the standardk-means clustering algorithm, improved with a mechanism to adaptively identify the number of clusters.kPSO proved to be a competitive solution when compared with other existing algorithms, since it showed better performance on a benchmark set of multimodal functions

    Running Up Those Hills: Multi-Modal Search with the Niching Migratory Multi-Swarm Optimiser

    Get PDF
    Copyright © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.2014 IEEE Congress on Evolutionary Computation, Beijing, China, 6 - 11 July 2014The codebase for this paper, containing the NMMSO algorithm, is at https://github.com/fieldsend/ieee_cec_2014_nmmsoWe present a new multi-modal evolutionary optimiser, the niching migratory multi-swarm optimiser (NMMSO), which dynamically manages many particle swarms. These sub-swarms are concerned with optimising separate local modes, and employ measures to allow swarm elements to migrate away from their parent swarm if they are identified as being in the vicinity of a separate peak, and to merge swarms together if they are identified as being concerned with the same peak. We employ coarse peak identification to facilitate the mode identification required. Swarm members are not constrained to particular sub- regions of the parameter space, however members are initialised in the vicinity of a swarm’s local mode estimate. NMMSO is shown to cope with a range of problem types, and to produce results competitive with the state-of-the-art on the CEC 2013 multi-modal optimisation competition test problems, providing new benchmark results in the field

    Region-based memetic algorithm with archive for multimodal optimisation.

    Get PDF
    In this paper we propose a specially designed memetic algorithm for multimodal optimisation problems. The proposal uses a niching strategy, called region-based niching strategy, that divides the search space in predefined and indexable hypercubes with decreasing size, called regions. This niching technique allows our proposal to keep high diversity in the population, and to keep the most promising regions in an external archive. The most promising solutions are improved with a local search method and also stored in the archive. The archive is used as an index to effiently prevent further exploration of these areas with the evolutionary algorithm. The resulting algorithm, called Region-based Memetic Algorithm with Archive, is tested on the benchmark proposed in the special session and competition on niching methods for multimodal function optimisation of the Congress on Evolutionary Computation in 2013. The results obtained show that the region-based niching strategy is more efficient than the classical niching strategy called clearing and that the use of the archive as restrictive index significantly improves the exploration efficiency of the algorithm. The proposal achieves better exploration and accuracy than other existing techniques

    Region-based Memetic Algorithm with Archive for multimodal optimisation

    Get PDF
    In this paper we propose a specially designed memetic algorithm for multimodal optimisation problems. The proposal uses a niching strategy, called region-based niching strategy, that divides the search space in predefined and indexable hypercubes with decreasing size, called regions. This niching technique allows our proposal to keep high diversity in the population, and to keep the most promising regions in an external archive. The most promising solutions are improved with a local search method and also stored in the archive. The archive is used as an index to effiently prevent further exploration of these areas with the evolutionary algorithm. The resulting algorithm, called Region-based Memetic Algorithm with Archive, is tested on the benchmark proposed in the special session and competition on niching methods for multimodal function optimisation of the Congress on Evolutionary Computation in 2013. The results obtained show that the region-based niching strategy is more efficient than the classical niching strategy called clearing and that the use of the archive as restrictive index significantly improves the exploration efficiency of the algorithm. The proposal achieves better exploration and accuracy than other existing techniques

    A Partition-Based Random Search Method for Multimodal Optimization

    Get PDF
    Practical optimization problems are often too complex to be formulated exactly. Knowing multiple good alternatives can help decision-makers easily switch solutions when needed, such as when faced with unforeseen constraints. A multimodal optimization task aims to find multiple global optima as well as high-quality local optima of an optimization problem. Evolutionary algorithms with niching techniques are commonly used for such problems, where a rough estimate of the optima number is required to determine the population size. In this paper, a partition-based random search method is proposed, in which the entire feasible domain is partitioned into smaller and smaller subregions iteratively. Promising regions are partitioned faster than unpromising regions, thus, promising areas will be exploited earlier than unpromising areas. All promising areas are exploited in parallel, which allows multiple good solutions to be found in a single run. The proposed method does not require prior knowledge about the optima number and it is not sensitive to the distance parameter. By cooperating with local search to refine the obtained solutions, the proposed method demonstrates good performance in many benchmark functions with multiple global optima. In addition, in problems with numerous local optima, high-quality local optima are captured earlier than low-quality local optima

    Static and Dynamic Multimodal Optimization by Improved Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations

    Get PDF
    The covariance matrix self-adaptation evolution strategy with repelling subpopulations (RS-CMSA-ES) is one of the most successful multimodal optimization (MMO) methods currently available. However, some of its components may become inefficient in certain situations. This study introduces the second variant of this method, called RS-CMSA-ESII. It improves the adaptation schemes for the normalized taboo distances of the archived solutions and the covariance matrix of the subpopulation, the termination criteria for the subpopulations, and the way in which the infeasible solutions are treated. It also improves the time complexity of RS-CMSA-ES by updating the initialization procedure of a subpopulation and developing a more accurate metric for determining critical taboo regions. The effects of these modifications are illustrated by designing controlled numerical simulations. RS-CMSA-ESII is then compared with the most successful and recent niching methods for MMO on a widely adopted test suite. The results obtained reveal the superiority of RS-CMSA-ESII over these methods, including the winners of the competition on niching methods for MMO in previous years. Besides, this study extends RS-CMSA-ESII to dynamic MMO and compares it with a few recently proposed methods on the modified moving peak benchmark functions
    • …
    corecore