6,527 research outputs found

    Automatic Accuracy Prediction for AMR Parsing

    Full text link
    Abstract Meaning Representation (AMR) represents sentences as directed, acyclic and rooted graphs, aiming at capturing their meaning in a machine readable format. AMR parsing converts natural language sentences into such graphs. However, evaluating a parser on new data by means of comparison to manually created AMR graphs is very costly. Also, we would like to be able to detect parses of questionable quality, or preferring results of alternative systems by selecting the ones for which we can assess good quality. We propose AMR accuracy prediction as the task of predicting several metrics of correctness for an automatically generated AMR parse - in absence of the corresponding gold parse. We develop a neural end-to-end multi-output regression model and perform three case studies: firstly, we evaluate the model's capacity of predicting AMR parse accuracies and test whether it can reliably assign high scores to gold parses. Secondly, we perform parse selection based on predicted parse accuracies of candidate parses from alternative systems, with the aim of improving overall results. Finally, we predict system ranks for submissions from two AMR shared tasks on the basis of their predicted parse accuracy averages. All experiments are carried out across two different domains and show that our method is effective.Comment: accepted at *SEM 201

    The DCU dependency-based metric in WMT-MetricsMATR 2010

    Get PDF
    We describe DCU’s LFG dependencybased metric submitted to the shared evaluation task of WMT-MetricsMATR 2010. The metric is built on the LFG F-structurebased approach presented in (Owczarzak et al., 2007). We explore the following improvements on the original metric: 1) we replace the in-house LFG parser with an open source dependency parser that directly parses strings into LFG dependencies; 2) we add a stemming module and unigram paraphrases to strengthen the aligner; 3) we introduce a chunk penalty following the practice of METEOR to reward continuous matches; and 4) we introduce and tune parameters to maximize the correlation with human judgement. Experiments show that these enhancements improve the dependency-based metric's correlation with human judgement

    Using F-structures in machine translation evaluation

    Get PDF
    Despite a growing interest in automatic evaluation methods for Machine Translation (MT) quality, most existing automatic metrics are still limited to surface comparison of translation and reference strings. In this paper we show how Lexical-Functional Grammar (LFG) labelled dependencies obtained from an automatic parse can be used to assess the quality of MT on a deeper linguistic level, giving as a result higher correlations with human judgements

    Comparing rule-based and data-driven approaches to Spanish-to-Basque machine translation

    Get PDF
    In this paper, we compare the rule-based and data-driven approaches in the context of Spanish-to-Basque Machine Translation. The rule-based system we consider has been developed specifically for Spanish-to-Basque machine translation, and is tuned to this language pair. On the contrary, the data-driven system we use is generic, and has not been specifically designed to deal with Basque. Spanish-to-Basque Machine Translation is a challenge for data-driven approaches for at least two reasons. First, there is lack of bilingual data on which a data-driven MT system can be trained. Second, Basque is a morphologically-rich agglutinative language and translating to Basque requires a huge generation of morphological information, a difficult task for a generic system not specifically tuned to Basque. We present the results of a series of experiments, obtained on two different corpora, one being “in-domain” and the other one “out-of-domain” with respect to the data-driven system. We show that n-gram based automatic evaluation and edit-distance-based human evaluation yield two different sets of results. According to BLEU, the data-driven system outperforms the rule-based system on the in-domain data, while according to the human evaluation, the rule-based approach achieves higher scores for both corpora

    Discourse Structure in Machine Translation Evaluation

    Full text link
    In this article, we explore the potential of using sentence-level discourse structure for machine translation evaluation. We first design discourse-aware similarity measures, which use all-subtree kernels to compare discourse parse trees in accordance with the Rhetorical Structure Theory (RST). Then, we show that a simple linear combination with these measures can help improve various existing machine translation evaluation metrics regarding correlation with human judgments both at the segment- and at the system-level. This suggests that discourse information is complementary to the information used by many of the existing evaluation metrics, and thus it could be taken into account when developing richer evaluation metrics, such as the WMT-14 winning combined metric DiscoTKparty. We also provide a detailed analysis of the relevance of various discourse elements and relations from the RST parse trees for machine translation evaluation. In particular we show that: (i) all aspects of the RST tree are relevant, (ii) nuclearity is more useful than relation type, and (iii) the similarity of the translation RST tree to the reference tree is positively correlated with translation quality.Comment: machine translation, machine translation evaluation, discourse analysis. Computational Linguistics, 201

    Robust Subgraph Generation Improves Abstract Meaning Representation Parsing

    Full text link
    The Abstract Meaning Representation (AMR) is a representation for open-domain rich semantics, with potential use in fields like event extraction and machine translation. Node generation, typically done using a simple dictionary lookup, is currently an important limiting factor in AMR parsing. We propose a small set of actions that derive AMR subgraphs by transformations on spans of text, which allows for more robust learning of this stage. Our set of construction actions generalize better than the previous approach, and can be learned with a simple classifier. We improve on the previous state-of-the-art result for AMR parsing, boosting end-to-end performance by 3 F1_1 on both the LDC2013E117 and LDC2014T12 datasets.Comment: To appear in ACL 201
    corecore