949 research outputs found

    Deep Learning-Based Dynamic Watermarking for Secure Signal Authentication in the Internet of Things

    Full text link
    Securing the Internet of Things (IoT) is a necessary milestone toward expediting the deployment of its applications and services. In particular, the functionality of the IoT devices is extremely dependent on the reliability of their message transmission. Cyber attacks such as data injection, eavesdropping, and man-in-the-middle threats can lead to security challenges. Securing IoT devices against such attacks requires accounting for their stringent computational power and need for low-latency operations. In this paper, a novel deep learning method is proposed for dynamic watermarking of IoT signals to detect cyber attacks. The proposed learning framework, based on a long short-term memory (LSTM) structure, enables the IoT devices to extract a set of stochastic features from their generated signal and dynamically watermark these features into the signal. This method enables the IoT's cloud center, which collects signals from the IoT devices, to effectively authenticate the reliability of the signals. Furthermore, the proposed method prevents complicated attack scenarios such as eavesdropping in which the cyber attacker collects the data from the IoT devices and aims to break the watermarking algorithm. Simulation results show that, with an attack detection delay of under 1 second the messages can be transmitted from IoT devices with an almost 100% reliability.Comment: 6 pages, 9 figure

    DNA Steganalysis Using Deep Recurrent Neural Networks

    Full text link
    Recent advances in next-generation sequencing technologies have facilitated the use of deoxyribonucleic acid (DNA) as a novel covert channels in steganography. There are various methods that exist in other domains to detect hidden messages in conventional covert channels. However, they have not been applied to DNA steganography. The current most common detection approaches, namely frequency analysis-based methods, often overlook important signals when directly applied to DNA steganography because those methods depend on the distribution of the number of sequence characters. To address this limitation, we propose a general sequence learning-based DNA steganalysis framework. The proposed approach learns the intrinsic distribution of coding and non-coding sequences and detects hidden messages by exploiting distribution variations after hiding these messages. Using deep recurrent neural networks (RNNs), our framework identifies the distribution variations by using the classification score to predict whether a sequence is to be a coding or non-coding sequence. We compare our proposed method to various existing methods and biological sequence analysis methods implemented on top of our framework. According to our experimental results, our approach delivers a robust detection performance compared to other tools

    Towards Optimal Copyright Protection Using Neural Networks Based Digital Image Watermarking

    Get PDF
    In the field of digital watermarking, digital image watermarking for copyright protection has attracted a lot of attention in the research community. Digital watermarking contains varies techniques for protecting the digital content. Among all those techniques,Discrete Wavelet Transform (DWT) provides higher image imperceptibility and robustness. Over the years, researchers have been designing watermarking techniques with robustness in mind, in order for the watermark to be resistant against any image processing techniques. Furthermore, the requirements of a good watermarking technique includes a tradeoff between robustness, image quality (imperceptibility) and capacity. In this paper, we have done an extensive literature review for the existing DWT techniques and those combined with other techniques such as Neural Networks. In addition to that, we have discuss the contribution of Neural Networks in copyright protection. Finally we reached our goal in which we identified the research gaps existed in the current watermarking schemes. So that, it will be easily to obtain an optimal techniques to make the watermark object robust to attacks while maintaining the imperceptibility to enhance the copyright protection

    Improved digital watermarking schemes using DCT and neural techniques

    Get PDF
    The present thesis investigates the copyright protection by utilizing the digital watermarking of images. The basic spatial domain technique DCT based frequency based technique were studied and simulated. Most recently used Neural Network based DCT Scheme is also studied and simulated. The earlier used Back Propagation Network (BPN) is replaced by Radial Basis Function Neural Network (RBFNN) in the proposed scheme to improve the robustness and overall computation requirements. Since RBFNN requires less number of weights during training, the memory requirement is also less as compared to BPN. Keywords : Digital Watermarking, Back Propagation Network (BPN), Hash Function, Radial Basis Function Neural Network (RBFNN), and Discrete Cosine Transform (DCT). Watermarking can be considered as a special technique of steganography where one message is embedded in another and the two messages are related to each other in some way. The most common examples of watermarking are the presence of specific patterns in currency notes, which are visible only when the note is held to light, and logos in the background of printed text documents. The watermarking techniques prevent forgery and unauthorized replication of physical objects. In digital watermarking a low-energy signal is imperceptibly embedded in another signal. The low-energy signal is called the watermark and it depicts some metadata, like security or rights information about the main signal. The main signal in which the watermark is embedded is referred to as the cover signal since it covers the watermark. In recent years the ease with which perfect copies can be made has lead large-scale unauthorized copying, which is a great concern to the music, film, book and software publishing industries. Because of this concern over copyright issues, a number of technologies are being developed to protect against illegal copying. One of these technologies is the use of digital watermarks. Watermarking embeds an ownership signal directly into the data. In this way, the signal is always present with the data. Analysis Digital watermarking techniques were implemented in the frequency domain using Discrete Cosine Transform (DCT). The DCT transforms a signal or image from the spatial domain to the frequency domain. Also digital watermarking was implemented using Neural Networks such as: 1. Back Propagation Network (BPN) 2. Radial Basis Function Neural Network (RBFNN) Digital watermarking using RBFNN was proposed which improves both security and robustness of the image. It is based on the Cover’s theorem which states that nonlinearly separable patterns can be separated linearly if the pattern is cast nonlinearly into a higher dimensional space. RBFNN contains an input layer, a hidden layer with nonlinear activation functions and an output layer with linear activation functions. Results The following results were obtained:- 1. The DCT based method is more robust than that of the LSB based method in the tested possible attacks. DCT method can achieve the following two goals: The first is that illegal users do not know the location of the embedded watermark in the image. The second is that a legal user can retrieve the embedded watermark from the altered image. 2. The RBFNN network is easier to train than the BPN network. The main advantage of the RBFNN over the BPN is the reduced computational cost in the training stage, while maintaining a good performance of approximation. Also less number of weights are required to be stored or less memory requirements for the verification and testing in a later stage
    corecore