7 research outputs found

    An Attention-Guided Deep Regression Model for Landmark Detection in Cephalograms

    Full text link
    Cephalometric tracing method is usually used in orthodontic diagnosis and treatment planning. In this paper, we propose a deep learning based framework to automatically detect anatomical landmarks in cephalometric X-ray images. We train the deep encoder-decoder for landmark detection, and combine global landmark configuration with local high-resolution feature responses. The proposed frame-work is based on 2-stage u-net, regressing the multi-channel heatmaps for land-mark detection. In this framework, we embed attention mechanism with global stage heatmaps, guiding the local stage inferring, to regress the local heatmap patches in a high resolution. Besides, the Expansive Exploration strategy improves robustness while inferring, expanding the searching scope without increasing model complexity. We have evaluated our framework in the most widely-used public dataset of landmark detection in cephalometric X-ray images. With less computation and manually tuning, our framework achieves state-of-the-art results

    Performance of a Convolutional Neural Network-Based Artificial Intelligence Algorithm for Automatic Cephalometric Landmark Detection

    Get PDF
    Objective: The aim of this study is to develop an artificial intelligence model to detect cephalometric landmark automatically enabling the automatic analysis of cephalometric radiographs which have a very important place in dental practice and is used routinely in the diagnosis and treatment of dental and skeletal disorders.Methods: In this study, 1620 lateral cephalograms were obtained and 21 landmarks were included. The coordinates of all landmarks in the 1620 films were obtained to establish a labeled data set: 1360 were used as a training set, 140 as a validation set, and 180 as a testing set. A convolutional neural network-based artificial intelligence algorithm for automatic cephalometric landmark detection was developed. Mean radial error and success detection rate within the range of 2 mm, 2.5 mm, 3 mm, and 4 mm were used to evaluate the performance of the model.Results: Presented artificial intelligence system (CranioCatch, Eskişehir, Turkey) could detect 21 anatomic landmarks in a lateral cephalometric radiograph. The highest success detection rate scores of 2 mm, 2.5 mm, 3 mm, and 4 mm were obtained from the sella point as 98.3, 99.4, 99.4, and 99.4, respectively. The mean radial error ± standard deviation value of the sella point was found as 0.616 ± 0.43. The lowest success detection rate scores of 2 mm, 2.5 mm, 3 mm, and 4 mm were obtained from the Gonion point as 48.3, 62.8, 73.9, and 87.2, respectively. The mean radial error ± standard deviation value of Gonion point was found as 8.304 ± 2.98.Conclusion: Although the success of the automatic landmark detection using the developed artificial intelligence model was not insufficient for clinical use, artificial intelligence-based cephalometric analysis systems seem promising to cephalometric analysis which provides a basis for diagnosis, treatment planning, and following-up in clinical orthodontics practice
    corecore