412 research outputs found

    Analysis of an asymptotic preserving scheme for linear kinetic equations in the diffusion limit

    Full text link
    We present a mathematical analysis of the asymptotic preserving scheme proposed in [M. Lemou and L. Mieussens, SIAM J. Sci. Comput., 31, pp. 334-368, 2008] for linear transport equations in kinetic and diffusive regimes. We prove that the scheme is uniformly stable and accurate with respect to the mean free path of the particles. This property is satisfied under an explicitly given CFL condition. This condition tends to a parabolic CFL condition for small mean free paths, and is close to a convection CFL condition for large mean free paths. Ou r analysis is based on very simple energy estimates

    StaRMAP - A second order staggered grid method for spherical harmonics moment equations of radiative transfer

    Full text link
    We present a simple method to solve spherical harmonics moment systems, such as the the time-dependent PNP_N and SPNSP_N equations, of radiative transfer. The method, which works for arbitrary moment order NN, makes use of the specific coupling between the moments in the PNP_N equations. This coupling naturally induces staggered grids in space and time, which in turn give rise to a canonical, second-order accurate finite difference scheme. While the scheme does not possess TVD or realizability limiters, its simplicity allows for a very efficient implementation in Matlab. We present several test cases, some of which demonstrate that the code solves problems with ten million degrees of freedom in space, angle, and time within a few seconds. The code for the numerical scheme, called StaRMAP (Staggered grid Radiation Moment Approximation), along with files for all presented test cases, can be downloaded so that all results can be reproduced by the reader.Comment: 28 pages, 7 figures; StaRMAP code available at http://www.math.temple.edu/~seibold/research/starma
    • …
    corecore