1,746 research outputs found
Mitochondrial Protein Import
The role of nucleoside triphosphates (NTPs) in mitochondrial protein import was investigated with the precursors of N. crassa ADP/ATP carrier, F1-ATPase subunit β, F0-ATPase subunit 9, and fusion proteins between subunit 9 and mouse dihydrofolate reductase. NTPs were necessary for the initial interaction of precursors with the mitochondria and for the completion of translocation of precursors from the mitochondrial surface into the mitochondria. Higher levels of NTPs were required for the latter reactions as compared with the early stages of import. Import of precursors having identical presequences but different mature protein parts required different levels of NTPs. The sensitivity of precursors in reticulocyte lysate to proteases was decreased by removal of NTPs and increased by their readdition. We suggest that the hydrolysis of NTPs is involved in modulating the folding state of precursors in the cytosol, thereby conferring import competence
Protein folding causes an arrest of preprotein translocation into mitochondria in vivo
With vital yeast cells, a hybrid protein consisting of the amino- terminal third of the precursor to cytochrome b2 and of the entire dihydrofolate reductase was arrested on the import pathway into mitochondria. Accumulation of the protein in the mitochondrial membranes was achieved by inducing a stable tertiary structure of the dihydrofolate reductase domain. Thereby, three salient features of mitochondrial protein uptake in vivo were demonstrated: its posttranslational character; the requirement for unfolding of precursors; and import through translocation contact sites. The permanent occupation of translocation sites by the fusion protein inhibited the import of other precursors; it did, however, not lead to leakage of mitochondrial ions, implying the existence of a channel that is sealed around the membrane spanning polypeptide segment
Reconstruction and Validation of a Genome-Scale Metabolic Model for the Filamentous Fungus Neurospora crassa Using FARM
The filamentous fungus Neurospora crassa played a central role in the development of twentieth-century genetics, biochemistry and molecular biology, and continues to serve as a model organism for eukaryotic biology. Here, we have reconstructed a genome-scale model of its metabolism. This model consists of 836 metabolic genes, 257 pathways, 6 cellular compartments, and is supported by extensive manual curation of 491 literature citations. To aid our reconstruction, we developed three optimization-based algorithms, which together comprise Fast Automated Reconstruction of Metabolism (FARM). These algorithms are: LInear MEtabolite Dilution Flux Balance Analysis (limed-FBA), which predicts flux while linearly accounting for metabolite dilution; One-step functional Pruning (OnePrune), which removes blocked reactions with a single compact linear program; and Consistent Reproduction Of growth/no-growth Phenotype (CROP), which reconciles differences between in silico and experimental gene essentiality faster than previous approaches. Against an independent test set of more than 300 essential/non-essential genes that were not used to train the model, the model displays 93% sensitivity and specificity. We also used the model to simulate the biochemical genetics experiments originally performed on Neurospora by comprehensively predicting nutrient rescue of essential genes and synthetic lethal interactions, and we provide detailed pathway-based mechanistic explanations of our predictions. Our model provides a reliable computational framework for the integration and interpretation of ongoing experimental efforts in Neurospora, and we anticipate that our methods will substantially reduce the manual effort required to develop high-quality genome-scale metabolic models for other organisms
Preparation of Neurospora crassa mitochondria
The fungus Neurospora crassa represents a eukaryotic cell with high biosynthetic activities. Cell mass doubles in 2-4 hr during expone ntial growth , even in simple salt media with sucrose as the sole carbon source. The microorgani sm forms a mycelium of long hyphae durlng vegetative growth . The mitochondria can be isolated under relatively gentle condi tions since a few breaks in the threadlike hyphae are sufficient to cause the outflow of the organelles. This article describes two methods for the physical disruption of the hyphae : (I) The cell s are opened in a grind mill between two rotating corundum di sks. This is a continuous and fast procedure and allows large- and small-scale preparations of mitochondria. (2) Hyphae are ground with sand in a mortar and pestle. This procedure can be applied to microscale preparations of mitochondria starting with minute amounts of cells. Other procedures for the isolation of Neurospora mitochondria after the physical di sruption or the enzymatic degradation of the cell wall have been described elsewher
Abstracts from the Neurospora 2006 Conference
Plenary and poster session abstracts from the Neurospora 2006 Conferenc
FGN 47 Neurospora Bibliography
This bibliography represents my attempt to collect all works dealing substantially with Neurospora. Please let me know of anything published in 1999 or 2000 that is not included here, so that it might be mentioned in the next bibliography
Assessing the impact of fluoroacetic acid on mitochondrial function using Neurospora crassa as a model organism
Ammonia toxicity: from head to toe?
Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction
- …