21 research outputs found

    Mecanismos de rede para swarms de drones em ambientes de monitorização aquática

    Get PDF
    With the development of intelligent platforms for environment sensing, drones present themselves as a fundamental resource capable of responding to the widest range of applications. Monitoring aquatic sensing environments is one such application and the communication between them becomes a key aspect for both navigation and sensing tasks. Testing an aquatic environment with a high number of Unmanned Surface Vehicles (USVs) is very costly, requiring a lot of time and resources. Therefore, simulation platforms become elements of great importance . In this dissertation a simulator is developed containing a modular architecture, based on a delay tolerant network, being capable of simulating aquatic environments as similar as possible to real aquatic environments. In addition to the developed simulator, this dissertation presents methods and strategies of cluster formation, allowing the aquatic drones to select, in a distributed way, the gateways of each cluster that will be responsible for forwarding collected data towards the gateway on land. Two gateway selection methods were implemented, one focused on the energy of aquatic drones, and one considering different metrics such as link quality, centrality and energy. The proposed methods were evaluated across several cases and scenarios, with clusters built and changed in a dynamic way, and it was observed that the election of gateways with a method based on several metrics, together with appropriated control strategy, provides a better outcome of the network behaviour throughout the aquatic monitoring tasks.Com o desenvolvimento de plataformas inteligentes que permitem monitorizar vários ambientes, os drones apresentam-se como um recurso fundamental capaz de responder às mais vastas aplicações. A monitorização de meios aquáticos com recurso a drones é uma destas aplicações e a comunicação entre os mesmos torna-se um aspeto fundamental, tanto em tarefas de navegação como em tarefas de sensorização. Testar um ambiente aquático com um elevado número de drones aquáticos é muito caro, requer muito tempo e vários recursos, por isso, plataformas de simulação tornam-se elementos de grande importância. Nesta dissertação é desenvolvido um simulador, com uma arquitetura modular, tendo por base uma rede tolerante a atrasos, sendo capaz de simular ambientes aquáticos o mais semelhante possível a ambientes aquáticos reais. Para além do simulador desenvolvido, esta dissertação propõe métodos e estratégias de formação de clusters de drones, permitindo que os drones aquáticos elejam, de uma forma distribuída, os gateways de cada cluster que serão responsáveis por encaminhar os dados recolhidos pelos drones em direção à estação em terra. Foram implementados dois métodos de eleição de gateway, um focado na energia dos drones aquáticos, e outro capaz de considerar diferentes métricas, tais como a qualidade de ligação, a centralidade e a energia. Os métodos propostos foram avaliados através de vários cenários em que os clusters são construídos e alterados de forma dinâmica, e foi observado que a escolha de gateways com um método baseado em várias métricas, e juntamente com uma estratégia de controlo apropriada, proporciona um melhor comportamento da rede ao longo das tarefas de monitorização aquática.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Tracking the Fine Scale Movements of Fish using Autonomous Maritime Robotics: A Systematic State of the Art Review

    Get PDF
    This paper provides a systematic state of the art review on tracking the fine scale movements of fish with the use of autonomous maritime robotics. Knowledge of migration patterns and the localization of specific species of fish at a given time is vital to many aspects of conservation. This paper reviews these technologies and provides insight into what systems are being used and why. The review results show that a larger amount of complex systems that use a deep learning techniques are used over more simplistic approaches to the design. Most results found in the study involve Autonomous Underwater Vehicles, which generally require the most complex array of sensors. The results also provide insight into future research such as methods involving swarm intelligence, which has seen an increase in use in recent years. This synthesis of current and future research will be helpful to research teams working to create an autonomous vehicle with intentions to track, navigate or survey

    Design of a low-cost unmanned surface vehicle for swarm robotics research in laboratory environments

    Get PDF
    Swarm robotics is the study of groups of simple, typically inexpensive agents working collaboratively toward a common goal. Such systems offer several benefits over single-robot solutions: they are flexible, scalable, and robust to the failure of individual agents. The majority of existing work in this field has focused on robots operating in terrestrial environments but the benefits of swarm systems extend to applications in the marine domain as well. The current scarcity of marine robotics platforms suitable for swarm research is detrimental to progress in this field. Of the few that exist, no publicly available unmanned surface vehicles can operate in a laboratory environment; an indoor tank of water where the vessels, temperature, lighting, etc. can be observed and controlled at all times. Laboratory testing is a common intermediate step in the hardware validation of algorithms. This thesis details the design of the microUSV: a small, inexpensive, laboratory-based platform developed to fill this gap. The microUSV system was validated by performing laboratory testing of two algorithms: a waypoint-following controller and orbital retrieval. The waypoint-following controller was a simple PI controller implementation which corrects a vessel's speed and heading to seek predetermined goal positions. The orbital retrieval algorithm is a novel method for a swarm of unmanned surface vehicles to gather floating marine contaminants such as plastics. The vessels follow a circular path, orbiting around a central collection location and veer outwards to retrieve contaminants they detect outside the designated area. This method can potentially be used to cluster floating plastics together from a large region to facilitate cleanup

    Biologically Inspired Connected Advanced Driver Assistance Systems

    Get PDF
    Advanced Driver Assistance Systems (ADAS) have become commonplace in the automotive industry over the last few decades. Even with the advent of ADAS, however, there are still a significant number of accidents and fatalities. ADAS has in some instances been shown to significantly reduce the number and severity of accidents. Manufacturers are working to avoid ADAS plateauing for effectiveness, which has led the industry to pursue various avenues of investment to ascend the next mountain of challenges – vehicle autonomy, smart mobility, connectivity, and electrification – for reducing accidents and injuries. A number of studies pertaining to ADAS scrutinize a specific ADAS technology for its effectiveness at mitigating accidents and reducing injury severity. A few studies take holistic accounts of ADAS. There are a number of directions ADAS could be further progressed. Industry manufacturers are improving existing ADAS technologies through multiple avenues of technology advancement. A number of ADAS systems have already been improved from passive, alert or warning, systems to active systems which provide early warning and if no action is taken will control the vehicle to avoid a collision or reduce the impact of the collision. Studies about the individual ADAS technologies have found significant improvement for reduction in collisions, but when evaluating the actual vehicles driving the performance of ADAS has been fairly constant since 2015. At the same time, industry is looking at networking vehicle ADAS with fixed infrastructure or with other vehicles’ ADAS. The present literature surrounding connected ADAS be it with fixed systems or other vehicles with ADAS focuses on the why and the how information is passed between vehicles. The ultimate goal of ADAS and connected ADAS is the development of autonomous vehicles. Biologically inspired systems provide an intriguing avenue for examination by applying self-organization found in biological communities to connecting ADAS among vehicles and fixed systems. Biological systems developed over millions of years to become highly organized and efficient. Biological inspiration has been used with much success in several engineering and science disciplines to optimize processes and designs. Applying movement patterns found in nature to automotive transportation is a rational progression. This work strategizes how to further the effectiveness of ADAS through the connection of ADAS with supporting assets both fixed systems and other vehicles with ADAS based on biological inspiration. The connection priorities will be refined by the relative positioning of the assets interacting with a particular vehicle’s ADAS. Then based on the relative positioning data distribution among systems will be stratified based on level of relevance. This will reduce the processing time for incorporating the external data into the ADAS actions. This dissertation contributes to the present understanding of ADAS effectiveness in real-world situations and set forth a method for how to optimally connect local ADAS vehicles following from biological inspiration. Also, there will be a better understanding of how ADAS reduces accidents and injury severity. The method for how to structure an ADAS network will provide a framework for auto-manufacturers for the development of their proprietary networked ADAS. This method will lead to a new horizon for reducing accidents and injury severity through the design of connecting ADAS equipped vehicles.Ph.D

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    Advances in Robot Navigation

    Get PDF
    Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore