520 research outputs found

    Thresholded Covering Algorithms for Robust and Max-Min Optimization

    Full text link
    The general problem of robust optimization is this: one of several possible scenarios will appear tomorrow, but things are more expensive tomorrow than they are today. What should you anticipatorily buy today, so that the worst-case cost (summed over both days) is minimized? Feige et al. and Khandekar et al. considered the k-robust model where the possible outcomes tomorrow are given by all demand-subsets of size k, and gave algorithms for the set cover problem, and the Steiner tree and facility location problems in this model, respectively. In this paper, we give the following simple and intuitive template for k-robust problems: "having built some anticipatory solution, if there exists a single demand whose augmentation cost is larger than some threshold, augment the anticipatory solution to cover this demand as well, and repeat". In this paper we show that this template gives us improved approximation algorithms for k-robust Steiner tree and set cover, and the first approximation algorithms for k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios (except for multicut) are almost best possible. As a by-product of our techniques, we also get algorithms for max-min problems of the form: "given a covering problem instance, which k of the elements are costliest to cover?".Comment: 24 page

    Separable Concave Optimization Approximately Equals Piecewise-Linear Optimization

    Get PDF
    We study the problem of minimizing a nonnegative separable concave function over a compact feasible set. We approximate this problem to within a factor of 1+epsilon by a piecewise-linear minimization problem over the same feasible set. Our main result is that when the feasible set is a polyhedron, the number of resulting pieces is polynomial in the input size of the polyhedron and linear in 1/epsilon. For many practical concave cost problems, the resulting piecewise-linear cost problem can be formulated as a well-studied discrete optimization problem. As a result, a variety of polynomial-time exact algorithms, approximation algorithms, and polynomial-time heuristics for discrete optimization problems immediately yield fully polynomial-time approximation schemes, approximation algorithms, and polynomial-time heuristics for the corresponding concave cost problems. We illustrate our approach on two problems. For the concave cost multicommodity flow problem, we devise a new heuristic and study its performance using computational experiments. We are able to approximately solve significantly larger test instances than previously possible, and obtain solutions on average within 4.27% of optimality. For the concave cost facility location problem, we obtain a new 1.4991+epsilon approximation algorithm.Comment: Full pape

    Cluster Before You Hallucinate: Approximating Node-Capacitated Network Design and Energy Efficient Routing

    Full text link
    We consider circuit routing with an objective of minimizing energy, in a network of routers that are speed scalable and that may be shutdown when idle. We consider both multicast routing and unicast routing. It is known that this energy minimization problem can be reduced to a capacitated flow network design problem, where vertices have a common capacity but arbitrary costs, and the goal is to choose a minimum cost collection of vertices whose induced subgraph will support the specified flow requirements. For the multicast (single-sink) capacitated design problem we give a polynomial-time algorithm that is O(log^3n)-approximate with O(log^4 n) congestion. This translates back to a O(log ^(4{\alpha}+3) n)-approximation for the multicast energy-minimization routing problem, where {\alpha} is the polynomial exponent in the dynamic power used by a router. For the unicast (multicommodity) capacitated design problem we give a polynomial-time algorithm that is O(log^5 n)-approximate with O(log^12 n) congestion, which translates back to a O(log^(12{\alpha}+5) n)-approximation for the unicast energy-minimization routing problem.Comment: 22 pages (full version of STOC 2014 paper

    Product Multicommodity Flow in Wireless Networks

    Get PDF
    We provide a tight approximate characterization of the nn-dimensional product multicommodity flow (PMF) region for a wireless network of nn nodes. Separate characterizations in terms of the spectral properties of appropriate network graphs are obtained in both an information theoretic sense and for a combinatorial interference model (e.g., Protocol model). These provide an inner approximation to the n2n^2 dimensional capacity region. These results answer the following questions which arise naturally from previous work: (a) What is the significance of 1/n1/\sqrt{n} in the scaling laws for the Protocol interference model obtained by Gupta and Kumar (2000)? (b) Can we obtain a tight approximation to the "maximum supportable flow" for node distributions more general than the geometric random distribution, traffic models other than randomly chosen source-destination pairs, and under very general assumptions on the channel fading model? We first establish that the random source-destination model is essentially a one-dimensional approximation to the capacity region, and a special case of product multi-commodity flow. Building on previous results, for a combinatorial interference model given by a network and a conflict graph, we relate the product multicommodity flow to the spectral properties of the underlying graphs resulting in computational upper and lower bounds. For the more interesting random fading model with additive white Gaussian noise (AWGN), we show that the scaling laws for PMF can again be tightly characterized by the spectral properties of appropriately defined graphs. As an implication, we obtain computationally efficient upper and lower bounds on the PMF for any wireless network with a guaranteed approximation factor.Comment: Revised version of "Capacity-Delay Scaling in Arbitrary Wireless Networks" submitted to the IEEE Transactions on Information Theory. Part of this work appeared in the Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2005, and the Internation Symposium on Information Theory (ISIT), 200

    Towards a better approximation for sparsest cut?

    Full text link
    We give a new (1+Ļµ)(1+\epsilon)-approximation for sparsest cut problem on graphs where small sets expand significantly more than the sparsest cut (sets of size n/rn/r expand by a factor logā”nlogā”r\sqrt{\log n\log r} bigger, for some small rr; this condition holds for many natural graph families). We give two different algorithms. One involves Guruswami-Sinop rounding on the level-rr Lasserre relaxation. The other is combinatorial and involves a new notion called {\em Small Set Expander Flows} (inspired by the {\em expander flows} of ARV) which we show exists in the input graph. Both algorithms run in time 2O(r)poly(n)2^{O(r)} \mathrm{poly}(n). We also show similar approximation algorithms in graphs with genus gg with an analogous local expansion condition. This is the first algorithm we know of that achieves (1+Ļµ)(1+\epsilon)-approximation on such general family of graphs

    Extensions and limits to vertex sparsification

    Get PDF
    Suppose we are given a graph G = (V, E) and a set of terminals K āŠ‚ V. We consider the problem of constructing a graph H = (K, E[subscript H]) that approximately preserves the congestion of every multicommodity flow with endpoints supported in K. We refer to such a graph as a flow sparsifier. We prove that there exist flow sparsifiers that simultaneously preserve the congestion of all multicommodity flows within an O(log k / log log k)-factor where |K| = k. This bound improves to O(1) if G excludes any fixed minor. This is a strengthening of previous results, which consider the problem of finding a graph H = (K, E[subscript H]) (a cut sparsifier) that approximately preserves the value of minimum cuts separating any partition of the terminals. Indirectly our result also allows us to give a construction for better quality cut sparsifiers (and flow sparsifiers). Thereby, we immediately improve all approximation ratios derived using vertex sparsification in [14]. We also prove an Ī©(log log k) lower bound for how well a flow sparsifier can simultaneously approximate the congestion of every multicommodity flow in the original graph. The proof of this theorem relies on a technique (which we refer to as oblivious dual certifcates) for proving super-constant congestion lower bounds against many multicommodity flows at once. Our result implies that approximation algorithms for multicommodity flow-type problems designed by a black box reduction to a "uniform" case on k nodes (see [14] for examples) must incur a super-constant cost in the approximation ratio

    Vertex Sparsifiers: New Results from Old Techniques

    Get PDF
    Given a capacitated graph G=(V,E)G = (V,E) and a set of terminals KāŠ†VK \subseteq V, how should we produce a graph HH only on the terminals KK so that every (multicommodity) flow between the terminals in GG could be supported in HH with low congestion, and vice versa? (Such a graph HH is called a flow-sparsifier for GG.) What if we want HH to be a "simple" graph? What if we allow HH to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier HH that maintains congestion up to a factor of O(logā”k/logā”logā”k)O(\log k/\log \log k), where k=āˆ£Kāˆ£k = |K|, (b) a convex combination of trees over the terminals KK that maintains congestion up to a factor of O(logā”k)O(\log k), and (c) for a planar graph GG, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in GG. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.Comment: An extended abstract appears in the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2010. Final version to appear in SIAM J. Computin

    Approximating the Held-Karp Bound for Metric TSP in Nearly Linear Time

    Full text link
    We give a nearly linear time randomized approximation scheme for the Held-Karp bound [Held and Karp, 1970] for metric TSP. Formally, given an undirected edge-weighted graph GG on mm edges and Ļµ>0\epsilon > 0, the algorithm outputs in O(mlogā”4n/Ļµ2)O(m \log^4n /\epsilon^2) time, with high probability, a (1+Ļµ)(1+\epsilon)-approximation to the Held-Karp bound on the metric TSP instance induced by the shortest path metric on GG. The algorithm can also be used to output a corresponding solution to the Subtour Elimination LP. We substantially improve upon the O(m2logā”2(m)/Ļµ2)O(m^2 \log^2(m)/\epsilon^2) running time achieved previously by Garg and Khandekar. The LP solution can be used to obtain a fast randomized (32+Ļµ)\big(\frac{3}{2} + \epsilon\big)-approximation for metric TSP which improves upon the running time of previous implementations of Christofides' algorithm
    • ā€¦
    corecore