3 research outputs found

    An approximate Bayesian marginal likelihood approach for estimating finite mixtures

    Full text link
    Estimation of finite mixture models when the mixing distribution support is unknown is an important problem. This paper gives a new approach based on a marginal likelihood for the unknown support. Motivated by a Bayesian Dirichlet prior model, a computationally efficient stochastic approximation version of the marginal likelihood is proposed and large-sample theory is presented. By restricting the support to a finite grid, a simulated annealing method is employed to maximize the marginal likelihood and estimate the support. Real and simulated data examples show that this novel stochastic approximation--simulated annealing procedure compares favorably to existing methods.Comment: 16 pages, 1 figure, 3 table

    A Recursive Algorithm for Mixture of Densities Estimation

    Get PDF
    In the framework of the so-called extended linear sigma model (eLSM), we include a pseudoscalar glueball with a mass of 2.6 GeV (as predicted by Lattice-QCD simulations) and we compute the two- and three-body decays into scalar and pseudoscalar mesons. This study is relevant for the future PANDA experiment at the FAIR facility. As a second step, we extend the eLSM by including the charm quark according to the global U(4)R × U(4)L chiral symmetry. We compute the masses, weak decay constants and strong decay widths of open charmed mesons. The precise description of the decays of open charmed states is important for the CBM experiment at FAIR
    corecore