39,812 research outputs found

    Context2Name: A Deep Learning-Based Approach to Infer Natural Variable Names from Usage Contexts

    Full text link
    Most of the JavaScript code deployed in the wild has been minified, a process in which identifier names are replaced with short, arbitrary and meaningless names. Minified code occupies less space, but also makes the code extremely difficult to manually inspect and understand. This paper presents Context2Name, a deep learningbased technique that partially reverses the effect of minification by predicting natural identifier names for minified names. The core idea is to predict from the usage context of a variable a name that captures the meaning of the variable. The approach combines a lightweight, token-based static analysis with an auto-encoder neural network that summarizes usage contexts and a recurrent neural network that predict natural names for a given usage context. We evaluate Context2Name with a large corpus of real-world JavaScript code and show that it successfully predicts 47.5% of all minified identifiers while taking only 2.9 milliseconds on average to predict a name. A comparison with the state-of-the-art tools JSNice and JSNaughty shows that our approach performs comparably in terms of accuracy while improving in terms of efficiency. Moreover, Context2Name complements the state-of-the-art by predicting 5.3% additional identifiers that are missed by both existing tools

    Neural Machine Translation Inspired Binary Code Similarity Comparison beyond Function Pairs

    Full text link
    Binary code analysis allows analyzing binary code without having access to the corresponding source code. A binary, after disassembly, is expressed in an assembly language. This inspires us to approach binary analysis by leveraging ideas and techniques from Natural Language Processing (NLP), a rich area focused on processing text of various natural languages. We notice that binary code analysis and NLP share a lot of analogical topics, such as semantics extraction, summarization, and classification. This work utilizes these ideas to address two important code similarity comparison problems. (I) Given a pair of basic blocks for different instruction set architectures (ISAs), determining whether their semantics is similar or not; and (II) given a piece of code of interest, determining if it is contained in another piece of assembly code for a different ISA. The solutions to these two problems have many applications, such as cross-architecture vulnerability discovery and code plagiarism detection. We implement a prototype system INNEREYE and perform a comprehensive evaluation. A comparison between our approach and existing approaches to Problem I shows that our system outperforms them in terms of accuracy, efficiency and scalability. And the case studies utilizing the system demonstrate that our solution to Problem II is effective. Moreover, this research showcases how to apply ideas and techniques from NLP to large-scale binary code analysis.Comment: Accepted by Network and Distributed Systems Security (NDSS) Symposium 201
    • …
    corecore