700 research outputs found

    Radar systems for the water resources mission, volume 2

    Get PDF
    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence

    Introduction to Synthetic Aperture Sonar

    Get PDF

    TechSat 21 and Revolutionizing Space Missions using Microsatellites

    Get PDF
    The Air Force Research Laboratory (AFRL) TechSat 21 flight experiment demonstrates a formation of three microsatellites flying in formation to operate as a “virtual satellite.” X-band transmit and receive payloads on each of the satellites form a large sparse aperture system. The satellite formation can be configured to optimize such varied missions as radio frequency (RF) sparse aperture imaging, precision geolocation, ground moving target indication (GMTI), single-pass digital terrain elevation data (DTED), electronic protection, single-pass interferometric synthetic aperture radar (IF-SAR), and high data-rate, secure communications. Benefits of such a microsatellite formation over single large satellites include unlimited aperture size and geometry, greater launch flexibility, higher system reliability, easier system upgrade, and low cost mass production. Key research has focused on the areas of formation flying and sparse aperture signal processing and been sponsored and guided by the Air Force Office of Scientific Research (AFOSR). The TechSat 21 Program Preliminary Design Review (PDR) was held in April 2001 and incorporated the results of extensive system trades to achieve a light-weight, high performance satellite design. An overview of experiment objectives, research advances, and satellite design is presented

    Technical approaches, chapter 3, part E

    Get PDF
    Radar altimeters, scatterometers, and imaging radar are described in terms of their functions, future developments, constraints, and applications

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Spatial statistics and analysis of earth's ionosphere

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe ionosphere, a layer of Earths upper atmosphere characterized by energetic charged particles, serves as a natural plasma laboratory and supplies proxy diagnostics of space weather drivers in the magnetosphere and the solar wind. The ionosphere is a highly dynamic medium, and the spatial structure of observed features (such as auroral light emissions, charge density, temperature, etc.) is rich with information when analyzed in the context of fluid, electromagnetic, and chemical models. Obtaining measurements with higher spatial and temporal resolution is clearly advantageous. For instance, measurements obtained with a new electronically-steerable incoherent scatter radar (ISR) present a unique space-time perspective compared to those of a dish-based ISR. However, there are unique ambiguities for this modality which must be carefully considered. The ISR target is stochastic, and the fidelity of fitted parameters (ionospheric densities and temperatures) requires integrated sampling, creating a tradeoff between measurement uncertainty and spatio-temporal resolution. Spatial statistics formalizes the relationship between spatially dispersed observations and the underlying process(es) they represent. A spatial process is regarded as a random field with its distribution structured (e.g., through a correlation function) such that data, sampled over a spatial domain, support inference or prediction of the process. Quantification of uncertainty, an important component of scientific data analysis, is a core value of spatial statistics. This research applies the formalism of spatial statistics to the analysis of Earth's ionosphere using remote sensing diagnostics. In the first part, we consider the problem of volumetric imaging using phased-array ISR based on optimal spatial prediction ("kriging"). In the second part, we develop a technique for reconstructing two-dimensional ion flow fields from line-of-sight projections using Tikhonov regularization. In the third part, we adapt our spatial statistical approach to global ionospheric imaging using total electron content (TEC) measurements derived from navigation satellite signals

    Altimetric system: Earth observing system. Volume 2h: Panel report

    Get PDF
    A rationale and recommendations for planning, implementing, and operating an altimetric system aboard the Earth observing system (Eos) spacecraft is provided. In keeping with the recommendations of the Eos Science and Mission Requirements Working Group, a complete altimetric system is defined that is capable of perpetuating the data set to be derived from TOPEX/Poseidon, enabling key scientific questions to be addressed. Since the scientific utility and technical maturity of spaceborne radar altimeters is well documented, the discussion is limited to highlighting those Eos-specific considerations that materially impact upon radar altimetric measurements

    Development of a Real-time Ultra-wideband See Through Wall Imaging Radar System

    Get PDF
    Ultra-Wideband (UWB) See-Through-Wall (STW) technology has emerged as a musthave enabling technology by both the military and commercial sectors. As a pioneer in this area, we have led the research in addressing many of the fundamental STW questions. This dissertation is to investigate and resolve a few hurdles in advancing this technology, and produce a realizable high performance STW platform system, which will aid the STW community to find the ultimate answer through experimental and theoretical work. The architectures of a realizable STW imaging system are thoroughly examined and studied. We present both a conceptual system based on RF instruments and a standalone real-time system based on custom design, which utilize reconfigurable design architecture and allows scaling down/up to a desired UWB operating frequency with little difficulty. The systems will serve as a high performance platform for STW study and other related UWB applications. Along the way to a complete STW system, we have developed a simplified transmission line model for wall characteristic prediction; we have developed a scalable synthetic aperture array including both the RF part and the switch control/synchronization part; we have proposed a cost-effective and efficient UWB data acquisition method for real-time STW application based on equivalent-time sampling method. The measurement results reported here include static image formation and tracking moveable targets behind the wall. Even though digital signal processing to generate radar images is not the focus of this research, simple methods for image formation have been implemented and results are very encouraging
    corecore