1,904 research outputs found

    A Score-level Fusion Method for Eye Movement Biometrics

    Full text link
    This paper proposes a novel framework for the use of eye movement patterns for biometric applications. Eye movements contain abundant information about cognitive brain functions, neural pathways, etc. In the proposed method, eye movement data is classified into fixations and saccades. Features extracted from fixations and saccades are used by a Gaussian Radial Basis Function Network (GRBFN) based method for biometric authentication. A score fusion approach is adopted to classify the data in the output layer. In the evaluation stage, the algorithm has been tested using two types of stimuli: random dot following on a screen and text reading. The results indicate the strength of eye movement pattern as a biometric modality. The algorithm has been evaluated on BioEye 2015 database and found to outperform all the other methods. Eye movements are generated by a complex oculomotor plant which is very hard to spoof by mechanical replicas. Use of eye movement dynamics along with iris recognition technology may lead to a robust counterfeit-resistant person identification system.Comment: 11 pages, 6 figures, In press, Pattern Recognition Letter

    A Survey of the Trends in Facial and Expression Recognition Databases and Methods

    Full text link
    Automated facial identification and facial expression recognition have been topics of active research over the past few decades. Facial and expression recognition find applications in human-computer interfaces, subject tracking, real-time security surveillance systems and social networking. Several holistic and geometric methods have been developed to identify faces and expressions using public and local facial image databases. In this work we present the evolution in facial image data sets and the methodologies for facial identification and recognition of expressions such as anger, sadness, happiness, disgust, fear and surprise. We observe that most of the earlier methods for facial and expression recognition aimed at improving the recognition rates for facial feature-based methods using static images. However, the recent methodologies have shifted focus towards robust implementation of facial/expression recognition from large image databases that vary with space (gathered from the internet) and time (video recordings). The evolution trends in databases and methodologies for facial and expression recognition can be useful for assessing the next-generation topics that may have applications in security systems or personal identification systems that involve "Quantitative face" assessments.Comment: 16 pages, 4 figures, 3 tables, International Journal of Computer Science and Engineering Survey, October, 201

    A new and general approach to signal denoising and eye movement classification based on segmented linear regression

    Get PDF
    We introduce a conceptually novel method for eye-movement signal analysis. The method is general in that it does not place severe restrictions on sampling frequency, measurement noise or subject behavior. Event identification is based on segmentation that simultaneously denoises the signal and determines event boundaries. The full gaze position time-series is segmented into an approximately optimal piecewise linear function in O(n) time. Gaze feature parameters for classification into fixations, saccades, smooth pursuits and post-saccadic oscillations are derived from human labeling in a data-driven manner. The range of oculomotor events identified and the powerful denoising performance make the method useable for both low-noise controlled laboratory settings and high-noise complex field experiments. This is desirable for harmonizing the gaze behavior (in the wild) and oculomotor event identification (in the laboratory) approaches to eye movement behavior. Denoising and classification performance are assessed using multiple datasets. Full open source implementation is included.Peer reviewe

    Eavesdropping Whilst You're Shopping: Balancing Personalisation and Privacy in Connected Retail Spaces

    Get PDF
    Physical retailers, who once led the way in tracking with loyalty cards and `reverse appends', now lag behind online competitors. Yet we might be seeing these tables turn, as many increasingly deploy technologies ranging from simple sensors to advanced emotion detection systems, even enabling them to tailor prices and shopping experiences on a per-customer basis. Here, we examine these in-store tracking technologies in the retail context, and evaluate them from both technical and regulatory standpoints. We first introduce the relevant technologies in context, before considering privacy impacts, the current remedies individuals might seek through technology and the law, and those remedies' limitations. To illustrate challenging tensions in this space we consider the feasibility of technical and legal approaches to both a) the recent `Go' store concept from Amazon which requires fine-grained, multi-modal tracking to function as a shop, and b) current challenges in opting in or out of increasingly pervasive passive Wi-Fi tracking. The `Go' store presents significant challenges with its legality in Europe significantly unclear and unilateral, technical measures to avoid biometric tracking likely ineffective. In the case of MAC addresses, we see a difficult-to-reconcile clash between privacy-as-confidentiality and privacy-as-control, and suggest a technical framework which might help balance the two. Significant challenges exist when seeking to balance personalisation with privacy, and researchers must work together, including across the boundaries of preferred privacy definitions, to come up with solutions that draw on both technology and the legal frameworks to provide effective and proportionate protection. Retailers, simultaneously, must ensure that their tracking is not just legal, but worthy of the trust of concerned data subjects.Comment: 10 pages, 1 figure, Proceedings of the PETRAS/IoTUK/IET Living in the Internet of Things Conference, London, United Kingdom, 28-29 March 201
    corecore