6,391 research outputs found

    Group Invariant Deep Representations for Image Instance Retrieval

    Get PDF
    Most image instance retrieval pipelines are based on comparison of vectors known as global image descriptors between a query image and the database images. Due to their success in large scale image classification, representations extracted from Convolutional Neural Networks (CNN) are quickly gaining ground on Fisher Vectors (FVs) as state-of-the-art global descriptors for image instance retrieval. While CNN-based descriptors are generally remarked for good retrieval performance at lower bitrates, they nevertheless present a number of drawbacks including the lack of robustness to common object transformations such as rotations compared with their interest point based FV counterparts. In this paper, we propose a method for computing invariant global descriptors from CNNs. Our method implements a recently proposed mathematical theory for invariance in a sensory cortex modeled as a feedforward neural network. The resulting global descriptors can be made invariant to multiple arbitrary transformation groups while retaining good discriminativeness. Based on a thorough empirical evaluation using several publicly available datasets, we show that our method is able to significantly and consistently improve retrieval results every time a new type of invariance is incorporated. We also show that our method which has few parameters is not prone to overfitting: improvements generalize well across datasets with different properties with regard to invariances. Finally, we show that our descriptors are able to compare favourably to other state-of-the-art compact descriptors in similar bitranges, exceeding the highest retrieval results reported in the literature on some datasets. A dedicated dimensionality reduction step --quantization or hashing-- may be able to further improve the competitiveness of the descriptors

    Asymmetric Feature Maps with Application to Sketch Based Retrieval

    Full text link
    We propose a novel concept of asymmetric feature maps (AFM), which allows to evaluate multiple kernels between a query and database entries without increasing the memory requirements. To demonstrate the advantages of the AFM method, we derive a short vector image representation that, due to asymmetric feature maps, supports efficient scale and translation invariant sketch-based image retrieval. Unlike most of the short-code based retrieval systems, the proposed method provides the query localization in the retrieved image. The efficiency of the search is boosted by approximating a 2D translation search via trigonometric polynomial of scores by 1D projections. The projections are a special case of AFM. An order of magnitude speed-up is achieved compared to traditional trigonometric polynomials. The results are boosted by an image-based average query expansion, exceeding significantly the state of the art on standard benchmarks.Comment: CVPR 201

    Cross-Domain Image Retrieval with Attention Modeling

    Full text link
    With the proliferation of e-commerce websites and the ubiquitousness of smart phones, cross-domain image retrieval using images taken by smart phones as queries to search products on e-commerce websites is emerging as a popular application. One challenge of this task is to locate the attention of both the query and database images. In particular, database images, e.g. of fashion products, on e-commerce websites are typically displayed with other accessories, and the images taken by users contain noisy background and large variations in orientation and lighting. Consequently, their attention is difficult to locate. In this paper, we exploit the rich tag information available on the e-commerce websites to locate the attention of database images. For query images, we use each candidate image in the database as the context to locate the query attention. Novel deep convolutional neural network architectures, namely TagYNet and CtxYNet, are proposed to learn the attention weights and then extract effective representations of the images. Experimental results on public datasets confirm that our approaches have significant improvement over the existing methods in terms of the retrieval accuracy and efficiency.Comment: 8 pages with an extra reference pag
    • …
    corecore