18,168 research outputs found

    Reading the Source Code of Social Ties

    Full text link
    Though online social network research has exploded during the past years, not much thought has been given to the exploration of the nature of social links. Online interactions have been interpreted as indicative of one social process or another (e.g., status exchange or trust), often with little systematic justification regarding the relation between observed data and theoretical concept. Our research aims to breach this gap in computational social science by proposing an unsupervised, parameter-free method to discover, with high accuracy, the fundamental domains of interaction occurring in social networks. By applying this method on two online datasets different by scope and type of interaction (aNobii and Flickr) we observe the spontaneous emergence of three domains of interaction representing the exchange of status, knowledge and social support. By finding significant relations between the domains of interaction and classic social network analysis issues (e.g., tie strength, dyadic interaction over time) we show how the network of interactions induced by the extracted domains can be used as a starting point for more nuanced analysis of online social data that may one day incorporate the normative grammar of social interaction. Our methods finds applications in online social media services ranging from recommendation to visual link summarization.Comment: 10 pages, 8 figures, Proceedings of the 2014 ACM conference on Web (WebSci'14

    A meshless, integration-free, and boundary-only RBF technique

    Get PDF
    Based on the radial basis function (RBF), non-singular general solution and dual reciprocity method (DRM), this paper presents an inherently meshless, integration-free, boundary-only RBF collocation techniques for numerical solution of various partial differential equation systems. The basic ideas behind this methodology are very mathematically simple. In this study, the RBFs are employed to approximate the inhomogeneous terms via the DRM, while non-singular general solution leads to a boundary-only RBF formulation for homogenous solution. The present scheme is named as the boundary knot method (BKM) to differentiate it from the other numerical techniques. In particular, due to the use of nonsingular general solutions rather than singular fundamental solutions, the BKM is different from the method of fundamental solution in that the former does no require the artificial boundary and results in the symmetric system equations under certain conditions. The efficiency and utility of this new technique are validated through a number of typical numerical examples. Completeness concern of the BKM due to the only use of non-singular part of complete fundamental solution is also discussed

    Topics in social network analysis and network science

    Full text link
    This chapter introduces statistical methods used in the analysis of social networks and in the rapidly evolving parallel-field of network science. Although several instances of social network analysis in health services research have appeared recently, the majority involve only the most basic methods and thus scratch the surface of what might be accomplished. Cutting-edge methods using relevant examples and illustrations in health services research are provided
    • …
    corecore