251 research outputs found

    New mini-bucket partitioning heuristics for bounding the probability of evidence

    Get PDF
    Mini-Bucket Elimination (MBE) is a well-known approximation algorithm deriving lower and upper bounds on quantities of interest over graphical models. It relies on a procedure that partitions a set of functions, called bucket, into smaller subsets, called mini-buckets. The method has been used with a single partitioning heuristic throughout, so the impact of the partitioning algorithm on the quality of the generated bound has never been investigated. This paper addresses this issue by presenting a framework within which partitioning strategies can be described, analyzed and compared. We derive a new class of partitioning heuristics from first-principles geared for likelihood queries, demonstrate their impact on a number of benchmarks for probabilistic reasoning and show that the results are competitive (often superior) to state-ofthe-art bounding schemes.Postprint (published version

    Anytime Point-Based Approximations for Large POMDPs

    Full text link
    The Partially Observable Markov Decision Process has long been recognized as a rich framework for real-world planning and control problems, especially in robotics. However exact solutions in this framework are typically computationally intractable for all but the smallest problems. A well-known technique for speeding up POMDP solving involves performing value backups at specific belief points, rather than over the entire belief simplex. The efficiency of this approach, however, depends greatly on the selection of points. This paper presents a set of novel techniques for selecting informative belief points which work well in practice. The point selection procedure is combined with point-based value backups to form an effective anytime POMDP algorithm called Point-Based Value Iteration (PBVI). The first aim of this paper is to introduce this algorithm and present a theoretical analysis justifying the choice of belief selection technique. The second aim of this paper is to provide a thorough empirical comparison between PBVI and other state-of-the-art POMDP methods, in particular the Perseus algorithm, in an effort to highlight their similarities and differences. Evaluation is performed using both standard POMDP domains and realistic robotic tasks
    • …
    corecore