427 research outputs found

    A Pairing-Based DAA Scheme Further Reducing TPM Resources

    Get PDF
    Direct Anonymous Attestation (DAA) is an anonymous signature scheme designed for anonymous attestation of a Trusted Platform Module (TPM) while preserving the privacy of the device owner. Since TPM has limited bandwidth and computational capability, one interesting feature of DAA is to split the signer role between two entities: a TPM and a host platform where the TPM is attached. Recently, Chen proposed a new DAA scheme that is more efficient than previous DAA schemes. In this paper, we construct a new DAA scheme requiring even fewer TPM resources. Our DAA scheme is about 5 times more efficient than Chen’s scheme for the TPM implementation using the Barreto-Naehrig curves. In addition, our scheme requires much smaller size of software code that needs to be implemented in the TPM. This makes our DAA scheme ideal for the TPM implementation. Our DAA scheme is efficient and provably secure in the random oracle model under the strong Diffie-Hellman assumption and the decisional Diffie-Hellman assumption.

    On the Design and Implementation of an Efficient DAA Scheme

    Get PDF
    International audienceDirect Anonymous Attestation (DAA) is an anonymous digital signature scheme that aims to provide both signer authentication and privacy. One of the properties that makes DAA an attractive choice in practice is the split signer role. In short, a principal signer (a Trusted Platform Module (TPM)) signs messages in collaboration with an assistant signer (the Host, a standard computing platform into which the TPM is embedded). This split aims to harness the high level of security offered by the TPM, and augment it using the high level of computational and storage ability offered by the Host. Our contribution in this paper is a modification to an existing pairing-based DAA scheme that significantly improves efficiency, and a comparison with the original RSA-based DAA scheme via a concrete implementation

    Direct Anonymous Attestation with Optimal TPM Signing Efficiency

    Get PDF
    Direct Anonymous Attestation (DAA) is an anonymous signature scheme, which allows the Trusted Platform Module (TPM), a small chip embedded in a host computer, to attest to the state of the host system, while preserving the privacy of the user. DAA provides two signature modes: fully anonymous signatures and pseudonymous signatures. One main goal of designing DAA schemes is to reduce the TPM signing workload as much as possible, as the TPM has only limited resources. In an optimal DAA scheme, the signing workload on the TPM will be no more than that required for a normal signature like ECSchnorr. To date, no scheme has achieved the optimal signing efficiency for both signature modes. In this paper, we propose the first DAA scheme which achieves the optimal TPM signing efficiency for both signature modes. In this scheme, the TPM takes only a single exponentiation to generate a signature, and this single exponentiation can be pre-computed. Our scheme can be implemented using the existing TPM 2.0 commands, and thus is compatible with the TPM 2.0 specification. We benchmarked the TPM 2.0 commands needed for three DAA use cases on an Infineon TPM 2.0 chip, and also implemented the host signing and verification algorithm for our scheme on a laptop with 1.80GHz Intel Core i7-8550U CPU. Our experimental results show that our DAA scheme obtains a total signing time of about 144 ms for either of two signature modes (compared to an online signing time of about 65 ms). Based on our benchmark results for the pseudonymous signature mode, our scheme is roughly 2x (resp., 5x) faster than the existing DAA schemes supported by TPM 2.0 in terms of total (resp., online) signing efficiency. In addition, our DAA scheme supports selective attribute disclosure, which can satisfy more application require- ments. We also extend our DAA scheme to support signature-based revocation and to guarantee privacy against subverted TPMs. The two extended DAA schemes keep the TPM signing efficiency optimal for both of two signa- ture modes, and outperform existing related schemes in terms of signing performance

    Trustworthy content push

    Full text link
    Delivery of content to mobile devices gains increasing importance in industrial environments to support employees in the field. An important application are e-mail push services like the fashionable Blackberry. These systems are facing security challenges regarding data transport to, and storage of the data on the end user equipment. The emerging Trusted Computing technology offers new answers to these open questions.Comment: 4 pages, 4 eps figure

    Security, Trust and Privacy (STP) Model for Federated Identity and Access Management (FIAM) Systems

    Get PDF
    The federated identity and access management systems facilitate the home domain organization users to access multiple resources (services) in the foreign domain organization by web single sign-on facility. In federated environment the user’s authentication is performed in the beginning of an authentication session and allowed to access multiple resources (services) until the current session is active. In current federated identity and access management systems the main security concerns are: (1) In home domain organization machine platforms bidirectional integrity measurement is not exist, (2) Integrated authentication (i.e., username/password and home domain machine platforms mutual attestation) is not present and (3) The resource (service) authorization in the foreign domain organization is not via the home domain machine platforms bidirectional attestation
    • …
    corecore