11,593 research outputs found

    A Minimum-Cost Flow Model for Workload Optimization on Cloud Infrastructure

    Full text link
    Recent technology advancements in the areas of compute, storage and networking, along with the increased demand for organizations to cut costs while remaining responsive to increasing service demands have led to the growth in the adoption of cloud computing services. Cloud services provide the promise of improved agility, resiliency, scalability and a lowered Total Cost of Ownership (TCO). This research introduces a framework for minimizing cost and maximizing resource utilization by using an Integer Linear Programming (ILP) approach to optimize the assignment of workloads to servers on Amazon Web Services (AWS) cloud infrastructure. The model is based on the classical minimum-cost flow model, known as the assignment model.Comment: 2017 IEEE 10th International Conference on Cloud Computin

    Towards Autonomic Service Provisioning Systems

    Full text link
    This paper discusses our experience in building SPIRE, an autonomic system for service provision. The architecture consists of a set of hosted Web Services subject to QoS constraints, and a certain number of servers used to run session-based traffic. Customers pay for having their jobs run, but require in turn certain quality guarantees: there are different SLAs specifying charges for running jobs and penalties for failing to meet promised performance metrics. The system is driven by an utility function, aiming at optimizing the average earned revenue per unit time. Demand and performance statistics are collected, while traffic parameters are estimated in order to make dynamic decisions concerning server allocation and admission control. Different utility functions are introduced and a number of experiments aiming at testing their performance are discussed. Results show that revenues can be dramatically improved by imposing suitable conditions for accepting incoming traffic; the proposed system performs well under different traffic settings, and it successfully adapts to changes in the operating environment.Comment: 11 pages, 9 Figures, http://www.wipo.int/pctdb/en/wo.jsp?WO=201002636

    Performance Measurements of Supercomputing and Cloud Storage Solutions

    Full text link
    Increasing amounts of data from varied sources, particularly in the fields of machine learning and graph analytics, are causing storage requirements to grow rapidly. A variety of technologies exist for storing and sharing these data, ranging from parallel file systems used by supercomputers to distributed block storage systems found in clouds. Relatively few comparative measurements exist to inform decisions about which storage systems are best suited for particular tasks. This work provides these measurements for two of the most popular storage technologies: Lustre and Amazon S3. Lustre is an open-source, high performance, parallel file system used by many of the largest supercomputers in the world. Amazon's Simple Storage Service, or S3, is part of the Amazon Web Services offering, and offers a scalable, distributed option to store and retrieve data from anywhere on the Internet. Parallel processing is essential for achieving high performance on modern storage systems. The performance tests used span the gamut of parallel I/O scenarios, ranging from single-client, single-node Amazon S3 and Lustre performance to a large-scale, multi-client test designed to demonstrate the capabilities of a modern storage appliance under heavy load. These results show that, when parallel I/O is used correctly (i.e., many simultaneous read or write processes), full network bandwidth performance is achievable and ranged from 10 gigabits/s over a 10 GigE S3 connection to 0.35 terabits/s using Lustre on a 1200 port 10 GigE switch. These results demonstrate that S3 is well-suited to sharing vast quantities of data over the Internet, while Lustre is well-suited to processing large quantities of data locally.Comment: 5 pages, 4 figures, to appear in IEEE HPEC 201
    • …
    corecore