45,266 research outputs found

    An analysis of stochastic shortest path problems

    Get PDF
    Caption title. "October 1988."Includes bibliographical references.Supported by the National Science Foundation under grant NSF-ECS-8519058 Supported by the Army Research Office under grant DAAL03-86-K-0171 The second author supported by a Presidential Young Investigator Award with matching funds from IBM, Inc. and Dupont, Inc.by Dimitri P. Bertsekas and John N. Tsitsiklis

    Monotone Causality in Opportunistically Stochastic Shortest Path Problems

    Full text link
    When traveling through a graph with an accessible deterministic path to a target, is it ever preferable to resort to stochastic node-to-node transitions instead? And if so, what are the conditions guaranteeing that such a stochastic optimal routing policy can be computed efficiently? We aim to answer these questions here by defining a class of Opportunistically Stochastic Shortest Path (OSSP) problems and deriving sufficient conditions for applicability of non-iterative label-setting methods. The usefulness of this framework is demonstrated in two very different contexts: numerical analysis and autonomous vehicle routing. We use OSSPs to derive causality conditions for semi-Lagrangian discretizations of anisotropic Hamilton-Jacobi equations. We also use a Dijkstra-like method to solve OSSPs optimizing the timing and urgency of lane change maneuvers for an autonomous vehicle navigating road networks with a heterogeneous traffic load

    A tutorial on recursive models for analyzing and predicting path choice behavior

    Full text link
    The problem at the heart of this tutorial consists in modeling the path choice behavior of network users. This problem has been extensively studied in transportation science, where it is known as the route choice problem. In this literature, individuals' choice of paths are typically predicted using discrete choice models. This article is a tutorial on a specific category of discrete choice models called recursive, and it makes three main contributions: First, for the purpose of assisting future research on route choice, we provide a comprehensive background on the problem, linking it to different fields including inverse optimization and inverse reinforcement learning. Second, we formally introduce the problem and the recursive modeling idea along with an overview of existing models, their properties and applications. Third, we extensively analyze illustrative examples from different angles so that a novice reader can gain intuition on the problem and the advantages provided by recursive models in comparison to path-based ones

    Expectations or Guarantees? I Want It All! A crossroad between games and MDPs

    Full text link
    When reasoning about the strategic capabilities of an agent, it is important to consider the nature of its adversaries. In the particular context of controller synthesis for quantitative specifications, the usual problem is to devise a strategy for a reactive system which yields some desired performance, taking into account the possible impact of the environment of the system. There are at least two ways to look at this environment. In the classical analysis of two-player quantitative games, the environment is purely antagonistic and the problem is to provide strict performance guarantees. In Markov decision processes, the environment is seen as purely stochastic: the aim is then to optimize the expected payoff, with no guarantee on individual outcomes. In this expository work, we report on recent results introducing the beyond worst-case synthesis problem, which is to construct strategies that guarantee some quantitative requirement in the worst-case while providing an higher expected value against a particular stochastic model of the environment given as input. This problem is relevant to produce system controllers that provide nice expected performance in the everyday situation while ensuring a strict (but relaxed) performance threshold even in the event of very bad (while unlikely) circumstances. It has been studied for both the mean-payoff and the shortest path quantitative measures.Comment: In Proceedings SR 2014, arXiv:1404.041
    corecore