760 research outputs found

    The Evolutionary Unfolding of Complexity

    Get PDF
    We analyze the population dynamics of a broad class of fitness functions that exhibit epochal evolution---a dynamical behavior, commonly observed in both natural and artificial evolutionary processes, in which long periods of stasis in an evolving population are punctuated by sudden bursts of change. Our approach---statistical dynamics---combines methods from both statistical mechanics and dynamical systems theory in a way that offers an alternative to current ``landscape'' models of evolutionary optimization. We describe the population dynamics on the macroscopic level of fitness classes or phenotype subbasins, while averaging out the genotypic variation that is consistent with a macroscopic state. Metastability in epochal evolution occurs solely at the macroscopic level of the fitness distribution. While a balance between selection and mutation maintains a quasistationary distribution of fitness, individuals diffuse randomly through selectively neutral subbasins in genotype space. Sudden innovations occur when, through this diffusion, a genotypic portal is discovered that connects to a new subbasin of higher fitness genotypes. In this way, we identify innovations with the unfolding and stabilization of a new dimension in the macroscopic state space. The architectural view of subbasins and portals in genotype space clarifies how frozen accidents and the resulting phenotypic constraints guide the evolution to higher complexity.Comment: 28 pages, 5 figure

    Cell division and migration in a 'genotype' for neural networks

    Get PDF
    Much research has been dedicated recently to applying genetic algorithms to populations of neural networks. However, while in real organisms the inherited genotype maps in complex ways into the resulting phenotype, in most of this research the development process that creates the individual phenotype is ignored. In this paper we present a model of neural development which includes cell division and cell migration in addition to axonal growth and branching. This reflects, in a very simplified way, what happens in the ontogeny of real organisms. The development process of our artificial organisms shows successive phases of functional differentiation and specialization. In addition, we find that mutations that affect different phases of development have very different evolutionary consequences. A single change in the early stages of cell division/migration can have huge effects on the phenotype while changes in later stages have usually a less drammatic impact. Sometimes changes that affect the first developental stages may be retained producing sudden changes in evolutionary history

    Effects of neutral selection on the evolution of molecular species

    Full text link
    We introduce a new model of evolution on a fitness landscape possessing a tunable degree of neutrality. The model allows us to study the general properties of molecular species undergoing neutral evolution. We find that a number of phenomena seen in RNA sequence-structure maps are present also in our general model. Examples are the occurrence of "common" structures which occupy a fraction of the genotype space which tends to unity as the length of the genotype increases, and the formation of percolating neutral networks which cover the genotype space in such a way that a member of such a network can be found within a small radius of any point in the space. We also describe a number of new phenomena which appear to be general properties of neutrally evolving systems. In particular, we show that the maximum fitness attained during the adaptive walk of a population evolving on such a fitness landscape increases with increasing degree of neutrality, and is directly related to the fitness of the most fit percolating network.Comment: 16 pages including 4 postscript figures, typeset in LaTeX2e using the Elsevier macro package elsart.cl

    Centric selection: a way to tune the exploration/exploitation trade-off

    Get PDF
    In this paper, we study the exploration / exploitation trade-off in cellular genetic algorithms. We define a new selection scheme, the centric selection, which is tunable and allows controlling the selective pressure with a single parameter. The equilibrium model is used to study the influence of the centric selection on the selective pressure and a new model which takes into account problem dependent statistics and selective pressure in order to deal with the exploration / exploitation trade-off is proposed: the punctuated equilibria model. Performances on the quadratic assignment problem and NK-Landscapes put in evidence an optimal exploration / exploitation trade-off on both of the classes of problems. The punctuated equilibria model is used to explain these results

    A multi-agent evolutionary robotics framework to train spiking neural networks

    Full text link
    A novel multi-agent evolutionary robotics (ER) based framework, inspired by competitive evolutionary environments in nature, is demonstrated for training Spiking Neural Networks (SNN). The weights of a population of SNNs along with morphological parameters of bots they control in the ER environment are treated as phenotypes. Rules of the framework select certain bots and their SNNs for reproduction and others for elimination based on their efficacy in capturing food in a competitive environment. While the bots and their SNNs are given no explicit reward to survive or reproduce via any loss function, these drives emerge implicitly as they evolve to hunt food and survive within these rules. Their efficiency in capturing food as a function of generations exhibit the evolutionary signature of punctuated equilibria. Two evolutionary inheritance algorithms on the phenotypes, Mutation and Crossover with Mutation, are demonstrated. Performances of these algorithms are compared using ensembles of 100 experiments for each algorithm. We find that Crossover with Mutation promotes 40% faster learning in the SNN than mere Mutation with a statistically significant margin.Comment: 9 pages, 11 figure
    corecore