321 research outputs found

    Representation Learning on Graphs: A Reinforcement Learning Application

    Full text link
    In this work, we study value function approximation in reinforcement learning (RL) problems with high dimensional state or action spaces via a generalized version of representation policy iteration (RPI). We consider the limitations of proto-value functions (PVFs) at accurately approximating the value function in low dimensions and we highlight the importance of features learning for an improved low-dimensional value function approximation. Then, we adopt different representation learning algorithm on graphs to learn the basis functions that best represent the value function. We empirically show that node2vec, an algorithm for scalable feature learning in networks, and the Variational Graph Auto-Encoder constantly outperform the commonly used smooth proto-value functions in low-dimensional feature space

    Representation Policy Iteration

    Full text link
    This paper addresses a fundamental issue central to approximation methods for solving large Markov decision processes (MDPs): how to automatically learn the underlying representation for value function approximation? A novel theoretically rigorous framework is proposed that automatically generates geometrically customized orthonormal sets of basis functions, which can be used with any approximate MDP solver like least squares policy iteration (LSPI). The key innovation is a coordinate-free representation of value functions, using the theory of smooth functions on a Riemannian manifold. Hodge theory yields a constructive method for generating basis functions for approximating value functions based on the eigenfunctions of the self-adjoint (Laplace-Beltrami) operator on manifolds. In effect, this approach performs a global Fourier analysis on the state space graph to approximate value functions, where the basis functions reflect the largescale topology of the underlying state space. A new class of algorithms called Representation Policy Iteration (RPI) are presented that automatically learn both basis functions and approximately optimal policies. Illustrative experiments compare the performance of RPI with that of LSPI using two handcoded basis functions (RBF and polynomial state encodings).Comment: Appears in Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence (UAI2005
    • …
    corecore