3,290 research outputs found

    When Does Disengagement Correlate with Performance in Spoken Dialog Computer Tutoring?

    Get PDF
    In this paper we investigate how student disengagement relates to two performance metrics in a spoken dialog computer tutoring corpus, both when disengagement is measured through manual annotation by a trained human judge, and also when disengagement is measured through automatic annotation by the system based on a machine learning model. First, we investigate whether manually labeled overall disengagement and six different disengagement types are predictive of learning and user satisfaction in the corpus. Our results show that although students’ percentage of overall disengaged turns negatively correlates both with the amount they learn and their user satisfaction, the individual types of disengagement correlate differently: some negatively correlate with learning and user satisfaction, while others don’t correlate with eithermetric at all. Moreover, these relationships change somewhat depending on student prerequisite knowledge level. Furthermore, using multiple disengagement types to predict learning improves predictive power. Overall, these manual label-based results suggest that although adapting to disengagement should improve both student learning and user satisfaction in computer tutoring, maximizing performance requires the system to detect and respond differently based on disengagement type. Next, we present an approach to automatically detecting and responding to user disengagement types based on their differing correlations with correctness. Investigation of ourmachine learningmodel of user disengagement shows that its automatic labels negatively correlate with both performance metrics in the same way as the manual labels. The similarity of the correlations across the manual and automatic labels suggests that the automatic labels are a reasonable substitute for the manual labels. Moreover, the significant negative correlations themselves suggest that redesigning ITSPOKE to automatically detect and respond to disengagement has the potential to remediate disengagement and thereby improve performance, even in the presence of noise introduced by the automatic detection process

    Qualitative, quantitative, and data mining methods for analyzing log data to characterize students' learning strategies and behaviors [discussant]

    Get PDF
    This symposium addresses how different classes of research methods, all based upon the use of log data from educational software, can facilitate the analysis of students’ learning strategies and behaviors. To this end, four multi-method programs of research are discussed, including the use of qualitative, quantitative-statistical, quantitative-modeling, and educational data mining methods. The symposium presents evidence regarding the applicability of each type of method to research questions of different grain sizes, and provides several examples of how these methods can be used in concert to facilitate our understanding of learning processes, learning strategies, and behaviors related to motivation, meta-cognition, and engagement

    Measuring Student Engagement in an Intelligent Tutoring System

    Get PDF
    Detection and prevention of off-task student behavior in an Intelligent Tutoring System (ITS) has gained a significant amount of attention in recent years. Previous work in these areas have shown some success and improvement. However, the research has largely ignored the incorporation of the expert on student behavior in the classroom: the teacher. Our research re-evaluates the subjects of off-task behavior detection and prevention by developing metrics for student engagement in an ITS using teacher observations of student behavior in the classroom. We present an exploratory analysis of such metrics and the data gathered from the teachers. For off-task prevention we developed a visual reporting tool that displays a representation of a student\u27s activity in an ITS as they progress and gives a valuable immediate report for the instructor

    Student Modeling in Intelligent Tutoring Systems

    Get PDF
    After decades of development, Intelligent Tutoring Systems (ITSs) have become a common learning environment for learners of various domains and academic levels. ITSs are computer systems designed to provide instruction and immediate feedback, which is customized to individual students, but without requiring the intervention of human instructors. All ITSs share the same goal: to provide tutorial services that support learning. Since learning is a very complex process, it is not surprising that a range of technologies and methodologies from different fields is employed. Student modeling is a pivotal technique used in ITSs. The model observes student behaviors in the tutor and creates a quantitative representation of student properties of interest necessary to customize instruction, to respond effectively, to engage students¡¯ interest and to promote learning. In this dissertation work, I focus on the following aspects of student modeling. Part I: Student Knowledge: Parameter Interpretation. Student modeling is widely used to obtain scientific insights about how people learn. Student models typically produce semantically meaningful parameter estimates, such as how quickly students learn a skill on average. Therefore, parameter estimates being interpretable and plausible is fundamental. My work includes automatically generating data-suggested Dirichlet priors for the Bayesian Knowledge Tracing model, in order to obtain more plausible parameter estimates. I also proposed, implemented, and evaluated an approach to generate multiple Dirichlet priors to improve parameter plausibility, accommodating the assumption that there are subsets of skills which students learn similarly. Part II: Student Performance: Student Performance Prediction. Accurately predicting student performance is one of the most desired features common evaluations for student modeling. for an ITS. The task, however, is very challenging, particularly in predicting a student¡¯s response on an individual problem in the tutor. I analyzed the components of two common student models to determine which aspects provide predictive power in classifying student performance. I found that modeling the student¡¯s overall knowledge led to improved predictive accuracy. I also presented an approach, which, rather than assuming students are drawn from a single distribution, modeled multiple distributions of student performances to improve the model¡¯s accuracy. Part III: Wheel-spinning: Student Future Failure in Mastery Learning. One drawback of the mastery learning framework is its possibility to leave a student stuck attempting to learn a skill he is unable to master. We refer to this phenomenon of students being given practice with no improvement as wheel-spinning. I analyzed student wheel-spinning across different tutoring systems and estimated the scope of the problem. To investigate the negative consequences of see what wheel-spinning could have done to students, I investigated the relationships between wheel-spinning and two other constructs of interest about students: efficiency of learning and ¡°gaming the system¡±. In addition, I designed a generic model of wheel-spinning, which uses features easily obtained by most ITSs. The model can be well generalized to unknown students with high accuracy classifying mastery and wheel-spinning problems. When used as a detector, the model can detect wheel-spinning in its early stage with satisfying satisfactory precision and recall

    Visual Feedback for Gaming Prevention in Intelligent Tutoring Systems

    Get PDF
    A major issue in Intelligent Tutoring Systems is off-task student behavior, especially performance-based gaming, where students systematically exploit tutor behavior in order to advance through a curriculum quickly and easily, with as little active thought directed at the educational content as possible. The goal of this research was to explore the phenomena of off-task gaming behavior within the Assistments system, as well as to develop a passive visual indicator to deter and prevent off-task gaming behavior without active intervention via graphical feedback to the student and teachers. Traditional active intervention approaches were also constructed for comparison purposes, and machine-learned gaming-detection models were developed as a potential invocation and evaluation mechanism. Passive graphical interventions have been well received by teachers, and results are suggestive that they are effective at reducing off-task gaming behavior

    Characterizing Productive Perseverance Using Sensor-Free Detectors of Student Knowledge, Behavior, and Affect

    Get PDF
    Failure is a necessary step in the process of learning. For this reason, there has been a myriad of research dedicated to the study of student perseverance in the presence of failure, leading to several commonly-cited theories and frameworks to characterize productive and unproductive representations of the construct of persistence. While researchers are in agreement that it is important for students to persist when struggling to learn new material, there can be both positive and negative aspects of persistence. What is it, then, that separates productive from unproductive persistence? The purpose of this work is to address this question through the development, extension, and study of data-driven models of student affect, behavior, and knowledge. The increased adoption of computer-based learning platforms in real classrooms has led to unique opportunities to study student learning at both fine levels of granularity and longitudinally at scale. Prior work has leveraged machine learning methods, existing learning theory, and previous education research to explore various aspects of student learning. These include the development of sensor-free detectors that utilize only the student interaction data collected through such learning platforms. Building off of the considerable amount of prior research, this work employs state-of-the-art machine learning methods in conjunction with the large scale granular data collected by computer-based learning platforms in alignment with three goals. First, this work focuses on the development of student models that study learning through the use of advancements in student modeling and deep learning methodologies. Second, this dissertation explores the development of tools that incorporate such models to support teachers in taking action in real classrooms to promote productive approaches to learning. Finally, this work aims to complete the loop in utilizing these detector models to better understand the underlying constructs that are being measured through their application and their connection to productive perseverance and commonly-observed learning outcomes

    Detecting students who are conducting inquiry Without Thinking Fastidiously (WTF) in the Context of Microworld Learning Environments

    Get PDF
    In recent years, there has been increased interest and research on identifying the various ways that students can deviate from expected or desired patterns while using educational software. This includes research on gaming the system, player transformation, haphazard inquiry, and failure to use key features of the learning system. Detection of these sorts of behaviors has helped researchers to better understand these behaviors, thus allowing software designers to develop interventions that can remediate them and/or reduce their negative impacts on student learning. This work addresses two types of student disengagement: carelessness and a behavior we term WTF (“Without Thinking Fastidiously”) behavior. Carelessness is defined as not demonstrating a skill despite knowing it; we measured carelessness using a machine learned model. In WTF behavior, the student is interacting with the software, but their actions appear to have no relationship to the intended learning task. We discuss the detector development process, validate the detectors with human labels of the behavior, and discuss implications for understanding how and why students conduct inquiry without thinking fastidiously while learning in science inquiry microworlds. Following this work we explore the relationship between student learner characteristics and the aforementioned disengaged behaviors carelessness and WTF. Our goal was to develop a deeper understanding of which learner characteristics correlate to carelessness or WTF behavior. Our work examines three alternative methods for predicting carelessness and WTF behaviors from learner characteristics: simple correlations, k-means clustering, and decision tree rule learners
    • …
    corecore