220,587 research outputs found

    Neural Response Ranking for Social Conversation: A Data-Efficient Approach

    Get PDF
    The overall objective of 'social' dialogue systems is to support engaging, entertaining, and lengthy conversations on a wide variety of topics, including social chit-chat. Apart from raw dialogue data, user-provided ratings are the most common signal used to train such systems to produce engaging responses. In this paper we show that social dialogue systems can be trained effectively from raw unannotated data. Using a dataset of real conversations collected in the 2017 Alexa Prize challenge, we developed a neural ranker for selecting 'good' system responses to user utterances, i.e. responses which are likely to lead to long and engaging conversations. We show that (1) our neural ranker consistently outperforms several strong baselines when trained to optimise for user ratings; (2) when trained on larger amounts of data and only using conversation length as the objective, the ranker performs better than the one trained using ratings -- ultimately reaching a Precision@1 of 0.87. This advance will make data collection for social conversational agents simpler and less expensive in the future.Comment: 2018 EMNLP Workshop SCAI: The 2nd International Workshop on Search-Oriented Conversational AI. Brussels, Belgium, October 31, 201

    Not All Dialogues are Created Equal: Instance Weighting for Neural Conversational Models

    Full text link
    Neural conversational models require substantial amounts of dialogue data for their parameter estimation and are therefore usually learned on large corpora such as chat forums or movie subtitles. These corpora are, however, often challenging to work with, notably due to their frequent lack of turn segmentation and the presence of multiple references external to the dialogue itself. This paper shows that these challenges can be mitigated by adding a weighting model into the architecture. The weighting model, which is itself estimated from dialogue data, associates each training example to a numerical weight that reflects its intrinsic quality for dialogue modelling. At training time, these sample weights are included into the empirical loss to be minimised. Evaluation results on retrieval-based models trained on movie and TV subtitles demonstrate that the inclusion of such a weighting model improves the model performance on unsupervised metrics.Comment: Accepted to SIGDIAL 201

    Deep Reinforcement Learning for Dialogue Generation

    Full text link
    Recent neural models of dialogue generation offer great promise for generating responses for conversational agents, but tend to be shortsighted, predicting utterances one at a time while ignoring their influence on future outcomes. Modeling the future direction of a dialogue is crucial to generating coherent, interesting dialogues, a need which led traditional NLP models of dialogue to draw on reinforcement learning. In this paper, we show how to integrate these goals, applying deep reinforcement learning to model future reward in chatbot dialogue. The model simulates dialogues between two virtual agents, using policy gradient methods to reward sequences that display three useful conversational properties: informativity (non-repetitive turns), coherence, and ease of answering (related to forward-looking function). We evaluate our model on diversity, length as well as with human judges, showing that the proposed algorithm generates more interactive responses and manages to foster a more sustained conversation in dialogue simulation. This work marks a first step towards learning a neural conversational model based on the long-term success of dialogues

    Dialogue Act Recognition via CRF-Attentive Structured Network

    Full text link
    Dialogue Act Recognition (DAR) is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention. Currently, many existing approaches formulate the DAR problem ranging from multi-classification to structured prediction, which suffer from handcrafted feature extensions and attentive contextual structural dependencies. In this paper, we consider the problem of DAR from the viewpoint of extending richer Conditional Random Field (CRF) structural dependencies without abandoning end-to-end training. We incorporate hierarchical semantic inference with memory mechanism on the utterance modeling. We then extend structured attention network to the linear-chain conditional random field layer which takes into account both contextual utterances and corresponding dialogue acts. The extensive experiments on two major benchmark datasets Switchboard Dialogue Act (SWDA) and Meeting Recorder Dialogue Act (MRDA) datasets show that our method achieves better performance than other state-of-the-art solutions to the problem. It is a remarkable fact that our method is nearly close to the human annotator's performance on SWDA within 2% gap.Comment: 10 pages, 4figure
    • …
    corecore