3,816 research outputs found

    Worst Configurations (Instantons) for Compressed Sensing over Reals: a Channel Coding Approach

    Full text link
    We consider the Linear Programming (LP) solution of the Compressed Sensing (CS) problem over reals, also known as the Basis Pursuit (BasP) algorithm. The BasP allows interpretation as a channel-coding problem, and it guarantees error-free reconstruction with a properly chosen measurement matrix and sufficiently sparse error vectors. In this manuscript, we examine how the BasP performs on a given measurement matrix and develop an algorithm to discover the sparsest vectors for which the BasP fails. The resulting algorithm is a generalization of our previous results on finding the most probable error-patterns degrading performance of a finite size Low-Density Parity-Check (LDPC) code in the error-floor regime. The BasP fails when its output is different from the actual error-pattern. We design a CS-Instanton Search Algorithm (ISA) generating a sparse vector, called a CS-instanton, such that the BasP fails on the CS-instanton, while the BasP recovery is successful for any modification of the CS-instanton replacing a nonzero element by zero. We also prove that, given a sufficiently dense random input for the error-vector, the CS-ISA converges to an instanton in a small finite number of steps. The performance of the CS-ISA is illustrated on a randomly generated 120×512120\times 512 matrix. For this example, the CS-ISA outputs the shortest instanton (error vector) pattern of length 11.Comment: Accepted to be presented at the IEEE International Symposium on Information Theory (ISIT 2010). 5 pages, 2 Figures. Minor edits from previous version. Added a new reference

    Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements

    Full text link
    Background subtraction has been a fundamental and widely studied task in video analysis, with a wide range of applications in video surveillance, teleconferencing and 3D modeling. Recently, motivated by compressive imaging, background subtraction from compressive measurements (BSCM) is becoming an active research task in video surveillance. In this paper, we propose a novel tensor-based robust PCA (TenRPCA) approach for BSCM by decomposing video frames into backgrounds with spatial-temporal correlations and foregrounds with spatio-temporal continuity in a tensor framework. In this approach, we use 3D total variation (TV) to enhance the spatio-temporal continuity of foregrounds, and Tucker decomposition to model the spatio-temporal correlations of video background. Based on this idea, we design a basic tensor RPCA model over the video frames, dubbed as the holistic TenRPCA model (H-TenRPCA). To characterize the correlations among the groups of similar 3D patches of video background, we further design a patch-group-based tensor RPCA model (PG-TenRPCA) by joint tensor Tucker decompositions of 3D patch groups for modeling the video background. Efficient algorithms using alternating direction method of multipliers (ADMM) are developed to solve the proposed models. Extensive experiments on simulated and real-world videos demonstrate the superiority of the proposed approaches over the existing state-of-the-art approaches.Comment: To appear in IEEE TI

    Jump-sparse and sparse recovery using Potts functionals

    Full text link
    We recover jump-sparse and sparse signals from blurred incomplete data corrupted by (possibly non-Gaussian) noise using inverse Potts energy functionals. We obtain analytical results (existence of minimizers, complexity) on inverse Potts functionals and provide relations to sparsity problems. We then propose a new optimization method for these functionals which is based on dynamic programming and the alternating direction method of multipliers (ADMM). A series of experiments shows that the proposed method yields very satisfactory jump-sparse and sparse reconstructions, respectively. We highlight the capability of the method by comparing it with classical and recent approaches such as TV minimization (jump-sparse signals), orthogonal matching pursuit, iterative hard thresholding, and iteratively reweighted â„“1\ell^1 minimization (sparse signals)

    Distributed Sparse Signal Recovery For Sensor Networks

    Full text link
    We propose a distributed algorithm for sparse signal recovery in sensor networks based on Iterative Hard Thresholding (IHT). Every agent has a set of measurements of a signal x, and the objective is for the agents to recover x from their collective measurements at a minimal communication cost and with low computational complexity. A naive distributed implementation of IHT would require global communication of every agent's full state in each iteration. We find that we can dramatically reduce this communication cost by leveraging solutions to the distributed top-K problem in the database literature. Evaluations show that our algorithm requires up to three orders of magnitude less total bandwidth than the best-known distributed basis pursuit method
    • …
    corecore