51 research outputs found

    An Alternating Direction Algorithm for Matrix Completion with Nonnegative Factors

    Full text link
    This paper introduces an algorithm for the nonnegative matrix factorization-and-completion problem, which aims to find nonnegative low-rank matrices X and Y so that the product XY approximates a nonnegative data matrix M whose elements are partially known (to a certain accuracy). This problem aggregates two existing problems: (i) nonnegative matrix factorization where all entries of M are given, and (ii) low-rank matrix completion where nonnegativity is not required. By taking the advantages of both nonnegativity and low-rankness, one can generally obtain superior results than those of just using one of the two properties. We propose to solve the non-convex constrained least-squares problem using an algorithm based on the classic alternating direction augmented Lagrangian method. Preliminary convergence properties of the algorithm and numerical simulation results are presented. Compared to a recent algorithm for nonnegative matrix factorization, the proposed algorithm produces factorizations of similar quality using only about half of the matrix entries. On tasks of recovering incomplete grayscale and hyperspectral images, the proposed algorithm yields overall better qualities than those produced by two recent matrix-completion algorithms that do not exploit nonnegativity

    An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization

    Get PDF
    The aim of this paper is to provide some theoretical understanding of quasi-Bayesian aggregation methods non-negative matrix factorization. We derive an oracle inequality for an aggregated estimator. This result holds for a very general class of prior distributions and shows how the prior affects the rate of convergence.Comment: This is the corrected version of the published paper P. Alquier, B. Guedj, An Oracle Inequality for Quasi-Bayesian Non-negative Matrix Factorization, Mathematical Methods of Statistics, 2017, vol. 26, no. 1, pp. 55-67. Since then Arnak Dalalyan (ENSAE) found a mistake in the proofs. We fixed the mistake at the price of a slightly different logarithmic term in the boun
    • …
    corecore