52,321 research outputs found

    The Homeostasis Protocol: Avoiding Transaction Coordination Through Program Analysis

    Get PDF
    Datastores today rely on distribution and replication to achieve improved performance and fault-tolerance. But correctness of many applications depends on strong consistency properties - something that can impose substantial overheads, since it requires coordinating the behavior of multiple nodes. This paper describes a new approach to achieving strong consistency in distributed systems while minimizing communication between nodes. The key insight is to allow the state of the system to be inconsistent during execution, as long as this inconsistency is bounded and does not affect transaction correctness. In contrast to previous work, our approach uses program analysis to extract semantic information about permissible levels of inconsistency and is fully automated. We then employ a novel homeostasis protocol to allow sites to operate independently, without communicating, as long as any inconsistency is governed by appropriate treaties between the nodes. We discuss mechanisms for optimizing treaties based on workload characteristics to minimize communication, as well as a prototype implementation and experiments that demonstrate the benefits of our approach on common transactional benchmarks

    Network-Aware Stream Query Processing in Mobile Ad-Hoc Networks

    Get PDF

    GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

    Full text link
    From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new graph-parallel systems (e.g., Pregel, GraphLab). By restricting the computation that can be expressed and introducing new techniques to partition and distribute the graph, these systems can efficiently execute iterative graph algorithms orders of magnitude faster than more general data-parallel systems. However, the same restrictions that enable the performance gains also make it difficult to express many of the important stages in a typical graph-analytics pipeline: constructing the graph, modifying its structure, or expressing computation that spans multiple graphs. As a consequence, existing graph analytics pipelines compose graph-parallel and data-parallel systems using external storage systems, leading to extensive data movement and complicated programming model. To address these challenges we introduce GraphX, a distributed graph computation framework that unifies graph-parallel and data-parallel computation. GraphX provides a small, core set of graph-parallel operators expressive enough to implement the Pregel and PowerGraph abstractions, yet simple enough to be cast in relational algebra. GraphX uses a collection of query optimization techniques such as automatic join rewrites to efficiently implement these graph-parallel operators. We evaluate GraphX on real-world graphs and workloads and demonstrate that GraphX achieves comparable performance as specialized graph computation systems, while outperforming them in end-to-end graph pipelines. Moreover, GraphX achieves a balance between expressiveness, performance, and ease of use
    • …
    corecore